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PREFACE

This publication is regarded by the author as supple-
mentary training material for students who are familiar
with, or are studying, elementary theory of sampling includ-
ing stratification, cluster sampling, ratio and regression
estimation, sampling with probability proportional to size,
and multiple-stage sampling. After studying sampling methods
one at a time, it is important to get a unified view of the
several methods and the conditions under which they have
about the same or different variances.

In sampling various populations we quite often find two
or more techniques that are roughly equal in efficiency and
reduce sampling variance about as much as possible. Admin-
istrative feasibility, costs, and freedom from potential
bias are important criteria for selecting a sampling plan
and become primary criteria when the choice ~s among plans
having small differences in sampling variance.

Ability to prejudge accurately the efficiency of alter-
native sample designs with reference to various survey
objectives and populations is important. Such ability comes
from experience and detailed study of alternative techniques
of sampling a population and of making estimates. Quite
often only two or three alternatives are compared in an
analysis because of limitations of data or only a few alter-
natives are of interest. In this publication many alternative
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sampling and estimation plans are applied to a small popula-
tion of apple trees and the results are recorded in tables
for comparative purposes. The focus of attention is on the
magnitude of the differences in efficiency in relation to
the patterns of variation that exist.

For some readers, parts of the presentation are probably
too detailed. However, it is important to understand fully
the alternatives and to put mathematical expressions for
estimators and their variances in forms that are most meaning-
ful for comparative purposes. Exercises are distributed
through the text.

Chapter I makes use of graphical, or geometrical, inter-
pretations in the comparison of four alternative ways of using
an auxiliary variable. There is a brief presentation of the
relevant theory for each plan which is followed by a dis-
cussion of the plans including a numerical example. Sampling
with probability proportional to size in comparison to other
methods is of special interest. For comparison, a part of
each variance formula is written as the sum of squares of
deviations from a line.

Chapter II expands the comparisons made in Chapter I to
include interactions in efficiency. For example, the compar-
ative efficiency of sampling units of various size is related
to the method of estimation and to stratification. Chapter III
provides some further comparisons, but the emphasis is on how
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theory and ingenuity solved an important problem in the samp-
ling of fruit trees. Some comparisons involving two-stage
sampling using apple trees as an example are included in
Chapter IV.

This volume was written because it was a pleasure and
because I always learn something from making comparisons
like those contained herein.

Earl E. Houseman
Statistician
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CHAPTER I
SIMPLE USES OF AN AUXILIARY VARIABLE

1.1 INTRODUCTION
Proficiency in the use of auxiliary information to reduce

sampling variance is an important goal in the formulation of
a sampling plan. In this chapter we will compare four alterna-
tive methods of using an auxiliary variable in the design of a
sample or in the estimator and one without using an auxiliary
variable, giving a total of five alternative methods. The
methods discussed are commonly found in textbooks on sampling.
It is important to know whether an auxiliary variable is worth
using and how to use it most effectively. Achievement of
greater efficiency in the use of an auxiliary variable is
usually inexpensive compared to increasing sample size, but
incorrect use could cause an increase rather than a decrease
in sampling error.

For each of the five alternatives there is an estimator
and the variance of each estimator can be expressed in a form
that is suitable for interpretation of the sampling variance
as a function of deviations of points from a line. The emphasis
in this chapter is on simple dot charts as a useful aid to
understanding or judging the comparative effectiveness of alter-
native methods in different situations. Special attention will
be given to sampling with probability proportional to size and
how it compares with other ways of using an auxiliary variable



including stratification and optimum allocation. After a
review of notation, definitions, and theory, a numerical
example will be presented which makes use of some data col-
lected in a research project to develop techniques for
estimating apple production.

Consider a population of N sampling units and let Yl, ...,
YN represent the unknown values of Y and let Xl' ...' XN repre-
sent the known values of an auxiliary variable X. A sample
is to be selected and the values of Y for the n suls (sampling
units) in the sample, namely Yl' ...' Yn' are to be obtained.
The corresponding values of X for the suls in the sample are
xl ' ... , x .n We assume that the objective is to estimate the

population mean,
N
r.Y.

1Y = rr Also, in the interest of keeping
the notation as simple as possible, let Y and X represent the

N N
population totals. That is, Y = r.Y. and X = r.x .. This gives

1 1

"Y", for example, a dual meaning as in "the characteristic Y"
or as the total for the population. However, the meaning
should be clear from the context.

A resume of the theory for each of the five alternatives,
which will be called plans, is presented after a brief review
of sampling with equal and unequal probabilities of selection.
1.1.1 EQUAL PROBABILITIES OF SELECTION

A sample obtained by selecting one su at a time, at
random with equal probability and without replacement, is
called a simple random sample. When the variance of Y in the
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population is defined as

(1. 1)
-the variance of the mean, y, of a simple random sample of n

is given by
N-n 2

VCr) (J= N=T -n
If the variance of Y is defined as

N
S2 1: (Y . - Y)

1= N-l
and the variance of - isY

V(y) N-n s2
= rr -n

(1. 2)

(1. 3)

(1.4)

In the discussion that follows, S2 will be used as the
definition of the variance of y.

The mean, y, of a simple random sample is an unbiased
n
1: (Yi _y)2

estimate of Y and the variance, s2 = -------- , among su's inn-l
the sample is an unbiased estimate of S2. Incidentally, the
writer from a practical point of view advises use of the word
"unbiased" with some caution. In the mathematical theory, the
meaning of "unbiased" is usually clear, but in practice "un-
biased estimate" is often misleading to persons who are
interested in estimates from a survey and are unaware of the
restricted meaning of the term.!/

!/ See sections 4.4 and 4.5 of Expected Value of a Sample Esti-
mate, Statistical Reporting Service, USDA, September 1974.
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Ezercise 1.1 Show that either definition of the variance

among the N values of Y leads to the same answer for the vari-

ance of y. That is, show that equations 1.2 and 1.4 are the

same.

1.1.2 UNEQUAL PROBABILITIES OF SELECTION
Some sampling plans specify that sampling units be

selected with pps (probability proportional to size). For
simplicity, sampling with replacement is assumed.

It is often very important to make a clear distinction
between the probability of selecting the ith su of a popula-
tion when a particular random draw is made and the probability
of the ith su being included in a sample. To help make the
distinction clear, the letter "P" or "p" will be used to repre-
sent selection probability and "f" will represent inclusion
probability, that is, the probability of any given su being in
the sample. When simple random sampling is applied, each su
has a probability equal to ~ of being in the sample. That is,
the inclusion probability, f, is equal to ~ for simple random
sampling.

With regard to sampling with pps and replacement, let Pi'
P2, ...,PN be the set of selection probabilities for the N su's

N
in the population. It is specified that rP.-1. Thus, "se1ect-

1

ing a sample with probabilities proportional to Xi" means that
X. N

Pi • ~ where x=rxi. Since the sampling is with replacement,
the selection probabilities remain constant from one random
draw to another.
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The unbiased estimator of Y for a sample of n is

(1.5)

In the estimator, i is an index of the n random draws because
the same su might be selected more than once. To illustrate,
if on the 4th draw su number 15 in the population is selected,
Y4 and P4 are equal to YlS and PIS. And if the 15th su is
selected again on the 12th draw, Y12 and P12 are equal to YlS
and PIS. In practice, techniques for avoiding the selection
of the su more than once are usually introduced but such tech-
niques are for later consideration.

y.
Each of the n values of p~ in Eq. 1.5 is an unbiased esti-

1

1 n y.mate of the population total. Thus,(-)E ~ is a simplen Pi
average of n independent, unbiased estimates of Y, and (~)
appears in Eq. 1.5 so Y will be an estimator of Y instead of
the population total.

-The variance of y, Eq.

V(y)

1. 5, is
2

=~n (1. 6)

where

and

2 1 N Yi 2 1 2
a • (N!) EPi (15i -Y) = (N!")at

NY .• EY.
1

(1. 7)

Is Eq. 1.6 reasonable? Study the estimator. For any
y.

given value of i, p~ in repeated sampling is a random variable
1

which has an expected value equal to the population total, Y.
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y.
By definitiont the variance of 1 isPi

2 NY. 2
at = I:P. ( 1 - Y)1r

1

where i is the index to the N su's in the population. In the

is the average of n independent estimates;
2atthereforet the variance of this average is n

1 n y.estimatort - L 1n p.
1

Andt since we

are interested in estimating Y rather than Yt o~ must be divided
by N2 as shown in Eq. 1.7.
1.2 RESUME OF THEORY FOR FIVE PLANS ~/

As discussed abovet we will use S2t Eq. 1.3t as the defini-
tion of the population variance for simple random sampling with

2replacement and a t Eq. 1.7t is the definition of population
variance for sampling with pps and replacement. Notice thatt
when the P. all equal 1 2 defined in 1.7 becomes 1.1.Nt a

1

For convenient referencet the estimators and their variances
for the five plans to be discussed are listed in Table 1.It page
29. The variances are expressed as population values (parameters)
rather than as sample estimates of variance. Each variance
formula is written in a form which shows a sum of squares of
deviations of points from a line (or lines). Alsot an alternative

~/ A good reference is: Cochran, W.G., Samplin~ Techniques:
Stratified Random Samplingt Chapter 5; Ratio EstimatestChapter 6; Regression Estimatest Chapter 7; and for sampling
with probability proportional to size see Sections 9.9t 9.l0t9.llt and 9.12 of Chapter 9.
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expression for the variance of the estimator for each plan is
shown. For simplicity, an assumption is made that the sampling
fractions are small when the sampling is without replacement.
Thus, the fpc (finite population correction) factor has been

N-nomitted from the variance formulas. The fpc, namely ~, can
always be included if needed. Notice in Table 1.1 that, for
a constant size of sample, it is only the sums of squares that
differ among the plans.

A dot chart that shows one point for each pair of values
of X. and Y. provides simple, graphical interpretations of the

1. 1.

sums of squares in the variance formulas for the five plans.
Each variance formula for the first four plans involves the
deviations of Y. from a line through the point (X,Y). The

1.

fifth plan involves line segments. How do the lines for the
five plans differ and how can one judge the sampling variance
for one plan compared to another by looking at a dot chart?
1.2.1 PLAN 1 - MEAN ESTIMATOR

In the first three plans, simple random sampling is
assumed. These three plans differ only with regard to the
method of estimating Y. The first plan is to use the sample

n
ry.

1. -average y = n as an estimator of Y. As a symbol for an
~

estimator we will use y, and a subscript will be used to
distinguish the different estimators. Thus, the first esti-
mator and its variance are n

- ry.
l.Yl = Y = --n (1. 8)
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(1.9)

The formula for the variance of Yl contains the expres-

sion As shown in Figure 1.1, the vertical distance
between a point (X.,Y.) and a horizontal line through (X,V) is

1 1

N _ 2
equal to (Y.-V). Hence E(Y.-Y) may be interpreted as the sum

1 1

of squares of the deviations of Y from a horizontal line through
(X,V). The closer the points are to this horizontal line, the

Asmaller the variance of Yl'
In the general context of regression estimation, Plan 1 is

a special case. Cochran, in Chapter 7, Sampling Techniques,
A

discusses regression estimation where y in the following equation
is the regression estimator:

Y c Y + b(X-x) (1.10)
The value of the regression coefficient, b, might be preassigned
or it might be computed from the sample data. It it is pre-
assigned, b is a constant when one considers the expected
value of y. If b is constant, it is clear from the theory of

A

expected values that E(y) = V because the expected value of y
is V and the expected value of the second term, b(X-x) is zero~/.
Thus, the expected value of y is V regardless of the value that
is preassigned to b. There are cases where a preassigned value
of b equal to 1 is of interest but that is not pertinent to the

~/ E[b(X-x)] = E(bX) - E(bx) = bX - bE(x) = 0 because E(x) • X
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present discussion. The point of interest is that Plan 1 may
be regarded as a special case of regression estimation where
b is given a preassigned value equal to zero. In Plans 2 and
3, the value of b is computed from the sample.
1.2.2 PLAN 2 - RATIO ESTI~~TOR

-
When we let b equal ~ , the right side of Eq. 1.10

x
-becomes X ~ which is the estimator for Plan 2.
x -= X ~Y2 -x

Thus,

(1.11)

This estimator is called a ratio estimator since it is the ratio
of two random variables y and x. For simple random sampling the

A

variance of Y2 is often written as follows:

where

and

A
s2

(!)[s2 + R2s2V (Y2) = ..1.= - 2RSXY]n n Y X
N

S2
L (Y._Y) 2

1= N-lY

N
S2 L (X.-X) 2= 1
X N-l

N
L (X.-X) (Y.-Y)

SXY= 1 1
N-l

(1.12)
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The variance formula for Plan 2, Table 1.1, shows that
the deviations, (Y.-RX.), are squared and summed.

1 1
A

Exeraise 1.2 With referenae to the varianae of Y2' Eq. 1.12,

sho~ that
2r(Y.-RX.)

1 1

N-l

Consider a line through the origin and the point (X,Y),
Ysee Figure 1.1. The slope of this line is R = The vertical
X

distance between this line and a point (X.,Y.) is (Y.-RX.).
1 1 1 1

Therefore, the sum of squares, r(Y.-RX.)Z, in the variance
1 1

A

formula for YZ is the sum of squares of the deviations of the
points (Xi,Yi) from the line through the origin and (X,Y). The

A Aonly difference between the variances of Yl and Y2 is the dif-
ference between rcy.-y)2 and r(Y.-RX.)2. The points for the

111

assumed population in Figure 1.1 are somewhat closer to the
line through the origin and (X,Y) than to a horizontal line

Athrough (X,Y). Therefore, one would expect YZ to have a
smaller sampling variance than Yl'

Exeraise 1.3 Verify that Y.-RX. is the vertiaal distanae
1 1

bet~een a point (X.,Y.) and a straight line that passes through
1 1

the origin and (X,Y).

1.2.3 PLAN 3 - REGRESSION ESTIMATOR
A

The estimator, Y3' in Plan 3 is called a regression esti-
mator. It makes use of a line that is derived by applying the
least squares method in fitting a line to the sample values of
x and y. The equation for the least squares line (fitted to
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the samp1e data) may be written as follows:
- b (x.-x)y. = y +

1 1

E (x.-i:) (y.-y)
where b = 1 1 i = 1, ... , n- 2 ,

E (Xi-x)

(1.13)

and y. is the point on the line where x is equal to x .• The
1 1

estimator of Y is obtained by substituting X for x. in 1.13
1

which gives
Y 3 = Y + b (X - i:) (1.14 )

To understand the variance formula for Y3' suppose a
least squares line is determined for the population of points
shown in Figure 1.1. It is

'"Y. = Y + B(X.-X)
1 1

(1. 1.5)

where B = E (X. -X) (Y. -V)
1 1

E(Xi-x)2 i = 1, ••• , N.

,.
and Yi is the point on the line where X is equal to Xi. This
line has been determined so the sum of the squares of the

N ,. 2deviations of y. from it is a minimum. That is, E(Y.-Y.)
111

is less than the sum of the squares of the deviations from any
other straight line. The sum of squares of the deviations of Yi
from the least-squares regression line can be written as
follows:

N '" 2
E (Y . - Y . )

1 1

N
= E{Y.-[Y+B(X.-X)]12

1 1

11

(1.16 )



The expression on the right side of 1.16 appears in the variance
A

formula for Y3 in Table 1.1 which is
NS2 E{Y.-[Y+B(X.-X)]}2

3 = (1:.) 1. 1.
n n N-l (1.17)

Exercise 1.4 Show that the right side of 1.16 reduces to

(1_r2)E(y._y)2 where r is the coefficient of correlation between
1.

X and Y.
1.2.4 DISCUSSION OF PLANS 1, 2, and 3

A A A

The variances of Yl' Y2' and Y3 have been related to the
sums of squares of deviations from three lines respectively:
(1) a horizontal 1ine through (X,Y), (2) a ratio 1ine (that is,
a line through the origin and (X,Y), and (3) a regression line
(which is a line determined by the method of least squares).
Since the sum of squares of deviations from the regression line

Ais least, the variance of Y3 will generally be less than the
A A

variances for Yl and Y2. The comparative variances can be
judged from visual examination of how close the points are to
each of the three lines.

AThe variance of Y2 is not always less than the variance
Aof Yl. Moreover, the correlation coefficient is not a reliable

A A

measure of how the variances of Yl and Y2 compare. According to
2 2Eq. 1.12, 2RSXY must be larger than R Sx or the variance of YZ

will be larger than the variance of Yl. In other words, use
of an auxiliary variable in a ratio estimator could result in
an increase rather than a decrease in variance.
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The variance formulas discussed above are population
variances (parameters) which must be estimated from the sample.
For all three plans, formula for estimating the sampling vari-
ances are of the same format as the population variance formula.
The only difference is that the sum of squares is computed from
sample data instead of data for the entire population. The
variance formulas for Plans Z and 3 are large sample approxi-
mations, which are commonly used in practice. (See Cochran's
book sections 6.4 and 7.4.)

In a survey involving many variables and tabulations by
various classifications, the first two estimators (plans) are

,..
commonly used. Although the variance of Y3 is, to some degree,

,.. ,..
generally less than the variance of YI or yZ' its use is gen-
erally limited to special situations where low error is very

,..
important and the variance of Y3 is appreciably less than the

,..
variance of YI or YZ. For example, it might be used to esti-
mate the production of a particular commodity or when it is
very important to make estimates with a high degree of accuracy
for a few selected characteristics.

All three of the estimators may be used with sampling
plans other than simple random sampling; for example, ratio
estimators and stratified random sampling are quite common.

Exeraise 1.5 For the speaial aase where the regression

line is the same as the ratio line, show that the varianae
,.. A "-

of Y3 is equal to the varianae of YZ. Can V(Y3) ever be
,..

larger than V(yZ)?

13



Exepcise 1.6 Compape Plans 1, 2, and J with pegapd to

the following thpee dot chapts peppesenting thpee diffepent

pelations between X and Y.

..
••• I .•••••••

f •• , ••••••••... , .
" •••••• t •.• " ••••

, • t .' ,.' .• , ' :
.. . . ,' .....

. " ' ... "

..
Y

..
Case 1

. .

Y

, ... ~. : '. .
II " • " •••••

.. .' ... ,"
" .I •• " •••

Case 2 X

Y

.. .
.. " .. . .

.. . .. ..

• II • " •... . . .
Case 3 X

Fop each of the thpee cases pank the thpee plans fpom lapgest

to smaZlest sampling vapiance.

1.2.5 PLAN 4 - SAMPLING WITH PPS
Plans 2 and 3 used the auxiliary variable in estimation

and not in the design or selection of a sample. Plan 4 is to
select a sample of n elements with replacement and to use
probabilities of selection proportional to X .. By substituting

1

x. X.
~ for Pi in Eq. 1.5 and ~ for Pi in 1.7, the following ex-
pressions are obtained for the estimator and its variance:

(1.18)

and (1.19)

The formula for the variance of Y4 shows that (Y.-RX.)
1 1

are the deviations which are squared. Thus, the line involved
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in Plan 4 is the same as the line for the ratio estimator.
Notice that the squares of the deviations, (Y.-RX.)2, are

1 1

weighted by ~ owing to the unequal probability of selection.
1

For the ratio estimator, the squares of the deviations were
weighted equally. Incidentally, the appropriate formula for

"estimating the variance of Y4 from sample data is not of the
same form (and will not reduce to the same form) as Eq. 1.19.

In practice one often finds that the variance of the
deviations, (Y.-RX.), increases as X increases. That is, the

1 1

values of Yare usually more widely scattered for large values
of X than for small values of X. If the relation between X and
Y is like the dot chart in Figure 1.2, Plan 4 will have a lower
sampling variance than the first three plans. A line through
(X,Y) and the origin fits the data about as well as any line.

"But, Y4 would have the least sampling variance because, as shown
in the formula for its variance, the largest values of (Y._RX.)2

1 1

receive the smallest weights in the sum of squares. Judging the
effectiveness of Plan 4 is more than a matter of observing how
well the data fit a line through (X,Y) and the origin. In fact,
it is easy to misjudge the effectiveness of sampling with pps.
We will return to this point after presentation of PIan 5.

Exeraise 1.7 Start with 2 defined in 1.7 and show(J as
1 N X 2 X. Ythat it reduaes when P. 1to (N) L r (Y.-RX. ) =r and R = X'.11 1

1

1.2.6 PLAN 5 - STRATIFIED SAMPLING
This plan makes use of the variable X as a basis for

stratification. Suppose the sampling units in the population

15



have been listed in order from smallest to largest values of X.
The list is then divided into L strata. Let

Nh • the population number of su's in stratum h,
nh • the sample number of su's,

nhfh • Nh = the sampling fraction,

Yhi and Xhi • the values of Y and X for the ith

su in stratum h,
S2 • the variance of Y within stratum h,Yh
Vh = the average value of Y in stratum h, and
Xh = the average value of X in stratum h.

We are primarily interested in proportional allocation of the
sample to strata for comparison with Plans 1, 2, and 3, and in
optimum allocation for comparison with Plan 4.

With proportional allocation the sampling fractions, fh'
are all equal and it is appropriate to use the unweighted sample
mean as an estimator of Y. Hence,

ys = Y (1.20)

Assuming simple random sampling within strata and that the
fpc's are negligible,

where

and

(1. 21)
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With reference to a dot chart for showing deviations that
are squared in the variance formulas, instead of one line, we
now ~ave a series of line segments, one for each stratum, as
shown in Figure 1.3. Each line segment is a horizontal line
through the stratum mean. The sampling variance, S~, is an
average of the squares of deviations from these horizontal line
segments. If the points are close to the line segments, the
sampling variance will be small for stratified random sampling.

Consider what happens to the sum of squares for stratified
random sampling as the number of strata increases, that is,
as the difference between the largest and smallest value of
X for each stratum decreases. If the relation between X and Y
over the whole population is approximately linear, the sum of
squares of the deviations from the line segments will become
approximately equal to the sum of squares of the deviation from
a regression line as in Plan 3. Under those conditions Plans 3
and 5 would have approximately the same sampling variance. If
the relation between X and Y is not linear, the sampling variance
for Plan 5 might be less than the sampling variance for Plan 3,
depending on the width of the stratum intervals, the degree of
nonlinearity, and how close the points are to a curved line.

Suppose the ratio line (that is, a straight line through
(X,Y) and the origin) fits the points about as well as any line.
In this case, the sampling variances for Plans 2, 3 and 5
(assuming the stratum intervals are small) would be approximately
equal.
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I I
!

to X to have a Zo~ep sampZing vapianae than sampZing ~ith

stpatifiaation by X and optimum alloaation? When?

Exepaise 1.9 (a) Refep to Figupe 1.1 and rank PZans 1,

2, 3~ and 5 from least vapianae to highest. Ans. 3~ 5~ 2~ 1

~ith 3 and 5 being alose depending on the number of strata.

(b) It appeaps that the varianae for Plan 4 ~ouZd be

muah Zarger than the varianae for stratified random sampZing

~ith optimum aZZoaation. Why? Look at the aonditionaZ

standapd deviation of Y.
(a) Sinae the range in the optimum sampZing fraations

for stratified random sampling is smaZZ~ ~ouZd you agree that

Plan 4 ~ould have a muah Zarger varianae than Plan 17

(d) Consider the simple tpansformation X: = X. + C ~here
1 1

C is a aonstant. Is there a vaZue of C suah that X~ ~ouZd be

an effeative measure of size.

Exeraise 1.10 Refer to Exeraise 1.6 and for eaah aase

rank aZl five pZans ~ith regapd to sampZing varianae.

Exeraise 1.11 Prepare a dot ahart sho~ing a reZation

bet~een X and Y suah that stpatified random sampling ~ith

alloaation proportional to Nh, Plan 5~ ~ilZ have a smaller

sampling varianae than the regression estimator~ PZan 3.

Exeraise 1.12 Prepare a dot ahart suah that the varianae

for Plan 5 ~ith proportional alloaation ~ill be apppoximateZy

equal to the varianae for Plan 1 and (at the same time) the

vapianae for Plan 5, ~ith optimum aZZoaation ~ill be muah
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less than the variance for Plan 1. This would be a case where

gain from stratification would be entirely attributable to

varying sampling fractions rather than stratification to remove

variation associated with differences among stratum means.

1.2.7 SUMMARY
If there is no relation between X and Y, including a

relation between X and the conditional standard deviation of
Y, information about X offers no possibilities for reducing
sampling variance; in fact, the sampling variance could be in-
creased by using X. If there is a relation, some alternative
ways to take advantage? of it have been shown. Clearly, the
most effective way of using an auxiliary variable depends on
what the relation is like.

In the sampling and estimation specifications for a
particular survey, an auxiliary variable would generally be
used in only one way. For example, attempting to use a relation-
ship between X and Y as a basis for stratification and also in
estimation is generally not advisable. Try to fully utilize
the potential contribution of an auxiliary variable in one
way. Whether an auxiliary variable is used in stratification
or in estimation might depend on the nature of other auxiliary
variables that are available. For example, some kinds of
auxiliary variables are readily useful in stratification but
not estimation. Consider using quantitative measures in esti-
mation or in sampling with pps and using nonquantitative measures
in stratification. This point will receive further attention.
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1.3 NUMERICAL EXAMPLE
Although our interest is in the practical application of

sampling theory, a major objective in the presentation of
numerical illustrations in this and later chapters is to
improve one's comprehension of patterns of variation that
exist and to develop one's skill at judging the effectiveness
of alternative sampling and estimation methods in specific
situations. It is informative to apply several alternatives
to the same population even though some of the alternatives
are not practically feasible.

The data for the following example were taken from a
research project to develop techniques for sampling apple trees
to forecast and estimate apple production. The primary purpose
was to make an intensive investigation of ways of sampling a
tree rather than how to select a sample of trees. As a part
of this project, the branches on six apple trees were mapped.
Included among the measurements that were taken are the cross-
sectional area of each branch and the number of apples on each
branch. There was a total of 28 primary branches on the six
trees. A primary branch, which is a branch from the tree trunk,
probably would not be used as a sampling unit in practice. How-
ever, data for these 28 primary branches are useful as a
numerical example of alternative ways of using an auxiliary
variable. Also the results will be useful in later discussions
and comparisons of methods of sampling within trees.
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For purposes of this numerical example, the 28 primary
branches is the population of sampling units. We assume the
purpose of sampling is to estimate the total number of apples
on the six trees. The auxiliary variable X is the csa (cross-
sectional area) of a branch. The fruit counts, Y, and the
csa's, X, for the 28 limbs are presented in Table 1.2. Let
us compare the five plans outlined above by referring to a dot
chart. Figure 1.4 shows the points (X.,Y.) and three lines:~ ~

(1) the horizontal line for Plan 1, (2) a ratio line through
the origin and (X,Y) which pertains to Plans 2 and 4, and
(3) the least squares regression line for Plan 3. To order
the sampling variances from smallest to largest, one would
undoubtedly rank the first three plans in the order 3, 2, and
1, with 1 having a much larger variance than the other two.
Since the scatter of the points increases as the csa increases,
one might expect Plan 4 to be better than Plan 2, but Plan 4
is somewhat difficult to judge. In Chapter II, similar com-
parisons of the plans will be made using terminal branches
(and hence more points) as sampling units.

The total number of sampling units, 28, is too small to
provide a good example of stratified random sampling in com-
parison to the other four plans. However, for purposes of
illustration, a comparison will be made. Since 28 is divisible
by 4, it is convenient to divide the branches, after being
ordered by csa, into four strata of 7 branches each as presented
in Table 1.2.
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The stratum boundaries are indicated by vertical dotted
lines in Figure 1.4. It is evident that line segments, for
the stratified random sampling as specified in the preceding
paragraph, do not fit the data as well as the regression line,
Plan 3. Although the sampling variance for Plan 5 is clearly
much less than the variance for Plan 1, it is undoubtedly greater
than the variance for Plan 3. Its rank compared to Plans 2 and
4 is uncertain.

We will now compare the judgments formed from looking at
Figure 1.4 with numerical results. The relative variances of
the five estimators, assuming n = 1 (that is, a sample of one
branch), are presented in Table 1.3. Relative variances are the
variances divided by y2. Although it is not possible to select
a stratified random sample of one branch, it is appropriate to
let n = 1 for purposes of comparing Plan 5 with the other plans.

In this example, the relationship between X and Y is such
that all four Plans 2, 3, 4, and 5 provide large reductions in
sampling variance. Stratification, as applied, reduced the
sampling variance by more than 80 percent compared to Plan 1
but not as much as Plans 2, 3, and 4 because it did not utilize
as fully the information provided by X. If it were feasible to
divide the population into more strata, perhaps 8 or 10 instead
of 4, the relative variance for Plan 5 would have been less than
0.307 and perhaps nearly as low as the variance for the regression
estimator, Plan 3. However, from the results that we have seen,
it appears that the auxiliary variable X can be used to reduce
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the sampling variance from 1.117 to about 0.200. Some of the
practical considerations in the choice of a plan will be dis-
cussed later. In the next section our understanding of sampling
with pps will be extended by comparing it to stratification with
optimum allocation.
1.3.1 VARYING THE SAMPLING FRACTION WITH SIZE OF Sfu~PLING UNIT

From Figure 1.4 it is clear that the variance of the
number of apples increases with the size of branch. The stan-
dard deviation within strata and the average csa per branch are
presented in Table 1.4.

Since the largest SYh is about 10 times larger than the
smallest, the largest sampling fraction (with stratified
sampling and optimum allocation) would be about 10 times
larger than the smallest. This range of variation in sampling
fractions is large enough to expect optimum allocation, compared
to proportional, to give a substantial reduction in variance.
The relative variance for optimum is 0.211 compared to 0.301
for proportional.

With reference to sampling with pps, notice that the
conditional standard deviation of Y is roughly in proportion
to X. This is indicated by the fact that the ratio of SYh to
Xh, Table 1.4, is nearly constant. Also, the points in Figure 1.4
follow, approximately, a line through the origin and (X,Y). There-
fore, it is reasonable to find that 0.211, the variance for
stratified sampling with optimum allocation, is close to 0.194,
the variance for sampling with pps.
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Since SYh is approximately 1n proportion to Xh, csa is a
good measure of size. However, it is informative to compare
the five plans when circumference is used or a measure of size
of branch. To examine the relation between number of apples
and circumference, see Figure 1.5. Notice that the least squares
line (Plan 3) departs farther from the origin than did the least
squares line £or csa, Figure 1.4. This is reflected in the
variances which are presented in Table 1.5. The relative vari-
ance, 0.256, for Plan 3 is considerably less than the relative
variances for Plans 2 and 4. Also notice that circumference
1S less effective than csa for all three Plans 2, 3, and 4.

Exercise 1.13 Refer to Table 1.2 and compute the four

values of Xh taking the circumference as the auxiliary variable.

Compare these values of Xh with the values of SYh given in

Table 1.4. What does this comparison indicate regarding the

use of circumference as a measure of size in pps sampling?

Notice that csa is a mathematical transformation of circum-
ference. The question might be asked, "Is there a better
transformation?" This question will be given further attention
in the next chapter. For the research study, a csa measurement
was made by wrapping a tape around the base of a branch. The
tapes had been calibrated to give a direct reading of the csa
assuming the branch is circular. Figure 1.4 suggests that csa
is a good measure of size for sampling with pps, but broader
experience is needed. In a later illustration it will become
evident that sampling with pps is a good practical method of
selecting a sample of branches.
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Exercise 1.14 By careful planning one can compute sub-

Y?
totals and totals of EY., EX., EY~, EX.Y., and EX1 that1 1 111 .

1

provide intermediate results from ~hich the variances for

several alternative plans are easily obtained. For purposes

of computation sho~ that the values of S2 for the five plans

may be written as follows:

C EY • ) 2
S2 = C 1 )[EY? - N1 ]1 R"=T 1

C 1 ) [EY?N=T 1

2 2 EY.2REX.Y. + R EX.] where R s ~1 1 1 ~A.
1

s; = SiC1-r2) where r is the correlation coefficient

Since there are 7 branches in each stratum the expression

in Table 1.1 for S2 reduces to5

S2 = C 1 ) [EY?5 w:4 1

stratum h.

Ey2
~] where Yh is the total of Y for

From Table 1.2 the following intermediate results are

obtained:

'Ly. =
1

2'Ey. =
1

EX.Y. =
1 1

7,199

3,844,283

67,633.47
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EX.
1

2EX.
1

Y~E 1r
1

=

=

=

157.76

1,329.98

392,247.3



The stratum totals, Yh, are

Y1 = 202, Y2 = 923, Y3 = 1,594, and Y4 = 4,480

22222
Compute the values of 51' 52' 53' 04' and 55 .

Answer: 52 = 73,8281
52 = 16,3392
52 = 12,2923

2 = 12,826°4
52 = 20,2745
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Table l.l--Estimators and Their Relative Variances 1/

i(Yhi-Yh)2
S 25 = -NI L Nh ----'"----h Nh-l

lower case to sanple values.
LY.

Y = N1

S2 or 02 expressed as an An alternative
average of squared deviations :expression for S2 or 02

Yhi = value of Y for the ith
unit in stratum h.

Plan Estimator Variance
of estimator

I - (1)s2Y1
= Y n 1

- (1)s22 Y2 = X~- n 2x

3 Y3 = Y + b(X-x) (.!)S2n 3

I y. (.!)024 Y X(-)L2.
4 n x. n 4

1

N 5
LNhYh - (.!)S2y = y

\0 5 N n 5

1/ Upper case letters refer to population values,
N = total nmi>er of units in population.
n = total mmiler of units in sanple.
L = ntmber of strata.1\ = nunber of units in the population in stratum h.

L
N = LNh
~ = nunt>erof units in sanple fran stratum h.

L
n = L~

N
Y = LY.

1

L(y._y)2
S2 1

1 N-I

S2 =
L(Yi-RXi)2

2 N-I
L{Y.- [Y + B(X.-X)]}2

S2 = 1 1

3 N-I
N -
L(~)(Y -RX.)2X. i 1

02 = 1

1+ N

S2 = S2
1 Y

S2 = S2 + R2S2 - 2RS2 Y X XY

S2 = S2 (l-r2)
3 Y

N Y
02 = LLP. (2- _ y)2

1+ N2 1 Pi

S2 I S2
5 'NLNh h

r= ~
(Sy)(~)

B= ~

Si

s
b = .25Z

s2x
- 2~(Yhi-Yh)

S2 = 1

h Nh-l



Table 1.2--Data for Primary Branches on Six Apple Trees
(Arrayed by csa)

· .... · ....
· ctJ:./" csa~r . ~ ·No. of' · . .JJ' Y' ~'No fStrattID:Bran : :C1r. :ap les: :StrattID:Branc :csa :Cir. : '10

· ., . p . · .... app es

1 1-4 .87 3.3 5 3 6-3 4.84 7.8 183
1-5 1.03 3.6 34 1-2 5.09 8.0 40
5-6 1.34 4.1 4 2-4 5.75 8.5 396
1-3 1.83 4.8 59 6-2 5.89 8.6 250
5-4 1.83 4.8 18 2-3 6.16 8.8 157
5-5 1.83 4.8 17 5-1 6.16 8.8 179
6-4 1.99 5.0 65 4-2 7.18 9.5 389

2 2-5 2.68 5.8 89 4 2-2 8.94 10.6 333
4-4 2.86 6.0 238 4-1 9.28 10.8 696
4-5 2.86 6.0 81 2-1 9.63 11.0 473
4-3 3.57 6.7 254 3-1 11.60 12.1 762
1-1 3.68 6.8 76 3-3 12.84 12.7 517
5-3 4.48 7.5 97 3-2 13.45 13.0 622
5-2 4.72 7.7 88 6-1 15.38 13.9 1,077

'IUI'AL 157.76 221.0 7,199

Y Tree (first digit) and branch within a tree (seconddigit).
Y Cross-sectionalarea of branch in square inches.
2J Circumferenceof branch in inches.

Table 1.3--Relative Variances of Estimators

"-Plan :Relative variance of y

1 1.117
2 0.247
3 0.186
4 0.194
5 0.307
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Table 1.4--Mean csa and Standard Deviation of Y by Strata

Mean csa, SYhStratum Xh SYh 5th
1 1.53 24.8 16.2
2 3.55 78.4 22.1
3 5.87 129 22.0
4 11.59 240 20.7

Table 1.5--Relative Variances When the Auxiliary Vari-
able is Circumference

Plan

1

2

3

4

Relative variance of y

1.117
0.559
0.256
0.438
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Figure l.l--Deviations in Variance Formulas for
Plans 1, 2, and 3
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Figure 1.2--Deviations in Variance Formulas for
Plans 2 and 4
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for Plan 5, Stratified Random Sampling
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CHAPTER II
FURTHER OBSERVATIONS ON USES OF AN AUXILIARY VARIABLE

2.1 INTRODUCTION
The effects on sampling variance of various factors in

sample design and estimation are not independent. For example,
the difference in the sampling variance between a mean esti-
mator and a ratio estimator might vary with the definition of
the sampling unit or with the criteria used for stratification.
In this chapter some numerical examples that display such inter-
actions will be glven. The objective is to further develop a
perception of patterns (or components) of variation and ability
to judge how alternative methods rank with regard to sampling
variance. As you study and acquire experience in sampling try
to visualize the pattern of variation in a population to be
sampled and test your skill at prejudging the effectiveness of
alternative sampling plans.

The data for the examples in this chapter are taken from
the research project on methods of estimating apple production
which was referred to in Chapter I. The sampling alternatives
that are considered require a map of each tree that is sampled.
That is, a map of a tree which defines the sampling units
(branches) is the sampling frame. Methods of probability
sampling are available which do not require preparing a com-
plete map of a tree. This will be discussed in Chapter III.
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As background, refer to Figure 2.1 which is a map of one
of the six apple trees used for the numerical example presented
in Chapter I. The map shows the scheme that was used for iden-
tifying branches. For example, 3-1-4 refers to third-stage
branch number 4 from second-stage branch number 1 and first-
stage branch number 3. Branches from the tree trunk were
mapped until "terminal" branches were reached. "Terminal
branch" refers to the last stage of branching where the mapping
of branches was terminated. The csa's (cross sectional areas)
of the terminal branches ranged from about 3/4 to 2 square inches
which seemed to be about the smallest practical size of branch
to consider as a sampling unit. There were 28 primary branches
and 135 terminal branches on the six trees. The average number
of apples on a terminal branch was about 50.

lfuen following a tree trunk to primary branches, to second-
stage branches, etc., small branches are sometimes found which
are not large enough to be classified as terminal branches.
For example, six apples were found on small branches on primary
branch number 2 before the 4 second-stage branches 2-1, 2-2, 2-3,
and 2-4 were reached. Apples on such branches have been called
"path" fruit, meaning fruit on the path of a terminal branch.
Path fruit present some special problems which will be discussed
in Chapter III. The amount of path fruit is relatively small
and will be ignored in this chapter.

For each of the first four plans that were discussed in
Chapter I primary and terminal branches will be compared as
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sampling units. Then, using terminal branches, the first four
plans will then be applied within strata (trees) for comparison
with each of the four plans when there is no stratification.
2.2 COMPARISON OF PRIMARY AND TERMINAL BRANCHES AS SAMPLING

UNITS
The number of applies on each of the 28 primary branches

and the csa of each branch were presented in Table 1.2. Data
for the 135 terminal branches are presented in Table 2.1. The
number of apples on primary branches included path fruit whereas
the numbers on terminal branches do not. The difference 1S pre-
sumed to be negligible for purposes of an exercise in variance
comparisons. Figures 1.4 and 2.2 are the dot charts for primary
and terminal limbs respectively.

Table 2.2 presents relative variances for terminal and
primary branches. The relative variances for primary branches
are taken from Table 1.3 in Chapter I, and relative variances
for terminal branches were computed using the same variance
formulas.

When interpreting variances it is essential that the
dimensions of the variances be clear. What variation does
a particular variance measure and in what units is the variance
expressed? Are the relative variances in Table 2.2 comparable?
Let us examine the formula for the relative variance (RV) of
Y1' which is

(2.1)
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A quantity like si is sometimes called "lIDit variance" as it
is a measure of variation among individual sampling units. The

S2
1

~Yl '

where

quantity may be called "uni t-relative variance" which is

the square of the coefficient of variation among individual
A

units. In Eq. 2.1, when n = 1 the relative variance of Yl'
is the unit-relative variance. A similar interpretation of
the variance formula for the other estimators holds. Thus,
s~ is the unit variance that pertains to the ratio estimator,

The variances presented in Table 2.2 are unit-relative
variances which may be regarded as sampling variances for
samples of one branch. Usually sampling variances for alterna-
tive plans are compared under one of two conditions: equal
sampling fractions or equal costs. In this chapter the com-
parisons will be under an assumption of equal sampling fractions.

1 1The sampling fractions are ~ and I!r' respectively, for one
primary branch and one terminal branch.

To achieve comparability, the variances for primary branches
will be converted to the equivalent of one terminal branch. That
is, we want to find the variances for primary branches that
correspond to a sampling fraction Of~. There is an average
of *--4.82 . 1 b h . b h~o term1na ranc es per prlmary ranc.
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Ignoring the fpc (finite population correction), the
relative variance of the first estimator, Yl' is 1~:7for a

0.660sample of n' primary branches and is ----- for a sample of nn
terminal branches. (The numbers, 1.17 and 0.660, are from
Table 2.2.) Since the sampling fractions are the same for
terminal and primary branches when n = 4.82 n', we will sub-

. n f ' Thst1tute ~ or n. us,

1.17--nr- = (4.82)(1.17) =
n

5.639
n

Therefore, 5.639 compares with .660 when the sampling fractions
are equal. The variance, 5.639, might be described as the
relative variance among primary branches expressed on the basis
of one terminal branch.

The conversion factor, 4.82, also applies to the other
estimators. Thus, all of the unit variances for primary branches
must be multiplied by 4.82 to convert them to the equivalent of
one terminal branch. This leads to Table 2.3, which reflects
differences in sampling efficiency under the condition that the
sampling fraction is the same for primary and terminal branches
and for all four plans.

The variances in Table 2.3 are also meaningful in terms of
sampling fractions that would be required when all four esti-
mators have the same variance. Such sampling fractions would be
proportional to the variances in Table 2.3, assuming the fpc's
are negligible. As an example, using primary branches as
sampling units, the variance of Y2 will be the same as the
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variance of YI when the sampling fraction of Plan 2 is 21 per-
1.191cent, 5.639 = .21, of the sampling fraction for Plan 1. As

Aanother example, for the sampling variance of Y3 using primary
Abranches to be the same as the sampling variance of Y4 using

terminal branches, the sampling fraction would need to be 2.8,
0.897 t' 1o. 319' 1mes arger.

Exercise 2.1 (aJ Find the relative variance of Y4 for a

random sample of five terminal branches. Plan 4 is sampling

with pps and replacement. Ans. 0.064.

(bJ Assume simple random sampling of primary branches and

find the number of primary branches so that the relative vari-
A

ance of (Yl) = 0.064. The answer, ignoring the fpc, is 18.3.

There were only 28 primary branches in the population so the
N-nfpc should be taken into account. Include the fpc, ~, in the

A

variance formula for Y1 and recompute the sample size that is

needed. Ans. 11 primary branches.
A A

(cJ With reference to (aJ and (bJ, 135y 4 and 2aYl are

estimators of the population total number of apples. Will the

relative variances of these two estimators of the total be

equal when the sample sizes are 5 terminal branches with

Plan 4 and 11 primary branches with Plan 17

(dJ It was stated above that, when the fpc is negligible,

the variances in Table 2.3 are proportional to the sampling

fractions needed to have the same relative variances of the

estimates for all of the alternatives. The answers to (aJ
5 18.3and (bJ were ~ and ~ when the fpc was ignored. Verify
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that these sampZing fraations are proportionaZ to the aorres-

ponding varianaes presented in Table 2.3.

Table 2.3 shows two major differences 1n efficiency:
(1) Plan 1 vs the other three plans and (2) primary vs terminal
branches as sampling units. Table 2.4 presents the relative
variances ·for Plans 2, 3 and 4 as a proportion of the variances
for Plan 1. Notice that the proportions of the variation among
primary branches which was accounted for by variation in the
size (csa) of branches was much higher than the proportions for
terminal branches. Variation in the size of terminal branches
was partially controlled by the specifications and process for
determining a terminal branch. For primary branches the corre-
lation between X and Y was .91. It was .69 for terminal branches.

In Table 2.5 the variances for terminal branches are ex-
pressed as a proportion of the variances for primary branches.
Here we see that the largest reduction in variance is under
Plan 1. However, even after variance associated with variation
in the csa has been taken into account in the estimator or pro-
cess of selection (Plans 2, 3 and 4), the sampling variances
for terminal branches are about one third of the sampling vari-
ances for primary branches. This is a manifestation of intra-
class correlation--the general tendency for things that are
close together in time or space to be alike. If there was no
intra-class correlation, the sampling variances for Plans 2, 3
and 4 would have been about the same for primary and terminal
branches. With Plan 1 the difference in variance between pri-
mary and terminal branches is attributable to the difference
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in correlation between csa and number of apples as well as
intra-class correlation.

The interaction shown in Table 2.3 between the variances
for the four plans and the two kinds of sampling units seems
typical. The situation might be viewed in this way. When
the sampling units are large and auxiliary information is not
used in the sample design or in estimation, the sampling vari-
ance is large and there is a large potential for reducing
sampling variance. An auxiliary variable that is effective
in reducing sampling variance will probably be relatively
more effective when the sampling units are large. This was
displayed in Table 2.4. Or, when an effective auxiliary vari-
able is used, the relative difference in sampling variance
between large and small sampling units will probably be less
as displayed in Table 2.5.

The same phenomenon has been observed in various other
situations. In area sampling, for example, if geographic
stratification is effective, it will tend to be relatively
more effective when the area sampling units are large than
when they are small. This is not a justification for large
sampling units. The implication is that matters of sample
design and estimation are more critical when the sampling
units are large and vary widely in size.

There is a limit to the reduction in variance that can
be achieved through sample design and estimation techniques.
That is, assuming a fixed sampling fraction, one might imagine
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a practical minimum variance as a goal to be achieved by design.
There might be a number of alternatives which will approach that
goal. Table 2.3 shows three alternatives with relative vari-
ances between 0.3 and 0.4.

Exeraise 2.2 Table 2.6, whiah will be disaussed later,

shows the number of apples on eaah of the six trees in the

E(y._y)2
1N-l ' isaolumn headed Yh. The varianaes among trees,

464,295, where Yi is the number of apples on the ith tree and

N is the number of trees. Verify that the relative varianae
A

of Yi is 0.344. This is the relative varianae of Yl when a

tree is the sampling unit and the size of the sample is one

tree. Convert this varianae, 0.344, to the equivalent of one

terminal branah. Ans. 7.74. Compare the answer with the

varianaes in Table 2.3 for Plan 1.

Exeraise 2.3 Assume that a simple random sample of

terminal branahes on the six trees is to be seleated and that

Ny is the estimator of the total number of apples on the six

trees. Ignoring the fpa, how many terminal branahes need to

be seleated so the varianae of Ny is equal to the varianae of

an estimate based on a random seleation of one tree and a aount

of all apples on the tree? Assume that 6y is the estimator for

the sample of one tree where y is the number of apples on the

sample tree. Refer to exeraise 2.2 for the varianae among trees

and to Table 2.2 for the varianae among terminal branahes.

Ans. The varianae of an estimate from a sample of 2 terminal

branahes is equal to the varianae of an estimate from a sample
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of one tree. There were 22.5 terminal branches per tree so

2 terminal branches is less than one-tenth of one tree. This

result is typical of the low sampling efficiency of a large

sampling unit. Moreover, it is very difficult to make an

accurate count of all apples on a tree.

2.3 STRATIFICATION BY TREES
Table' 2.6 presents variances, covariances, and other

information for each of the six trees. These data pertain to
terminal branches. They will be used to determine the vari-
ances for five different estimators based on stratified random
sampling with trees as strata and a constant sampling fraction.
Stratified sampling with pps within trees will also be con-
sidered which gives a total of six alternatives. For these
six alternatives, designated as plans 6 through 11, we want
to find sampling variances that are comparable with the vari-
ances presented in Table 2.2 for nonstratified sampling of
terminal branches.

It is advantageous to become sufficiently familiar with
sampling theory to avoid searching textbooks for a formula
and checking it to be sure it is applicable. A formula as
found in a textbook might be appropriate but need adaptation.
By recalling a few things from the theory of random variables,
correct variance formulas can be readily derived for finding
the sampling variances for the sampling and estimation plans
that follow.
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For comparative purposes, relative variances are recorded
in Table 2.7 for four plans that have been discussed and for
six additional plans that will be discussed in the next section.
2.3.1 PLAN 6--MEAN ESTIMATOR

In Plan 6 the sample is allocated to trees (strata) in
proportion to the number of terminal branches on the trees.
You may notice that Plan 6 is the same as Plan 5 except that
the strata are trees instead of size-of-branch classes. The
estimator of the population mean, Y, is

+ ••• + (2.2)

where
l:Yh"" 1- 1Yh = nh

is the sample average for stratum h
(i.e., the average number of apples per
terminal branch on tree h),

h 1S the index for strata (trees),
i 1S the index for sampling units within stratum h

(branches on tree),
Nh is the total number of sampling units (terminal

branches) in stratum h,

N = l:Nh is the total number of sampling units in
the population, and

nh is the number of sampling units in the sample from
stratum h (number of branches in the sample from
tree h).
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Exercise 2.4 Since the sample is stratified and allo-

cated to strata in proportion to Nh, the estimator is a simple

average of all values of Yhi in the sample. Show that this is
true.

The estimator, Y6' was written as shown in Eq. (2.2)
because, to find its variance, we need to consider it as a

Nhfunction of the stratum means. The weights ~, are constant.
~

Therefore, the variance of Y6 depends on the variance of the
stratum means. The sample from one stratum is independent of
the sample from another stratum. Therefore, the stratum.means,
- Nh _ .Yh' are independent random variables, and the terms, ~ Yh' ~n
Y6 are independent random variables. We know from the theory
of random variables that the variance of the sum of independent
random variables is the sum of the variances of the random vari-

~abIes. This gives the basis for writing the variance of Y6 as
follows:

+ ... +

We also know that the variance of a constant times a variable
equals the square of the constant times the variance of the
variable. Hence,

(2.3)

-Next, we need an expression for the variance of Yh. Since the
sample within each stratum is a simple random sample, the vari-
ance of Yh is as follows:
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where =

(2.4)

nhfractions, fh = ~ ' are small so the
h

2The subscript Y in SYh is included to show that the variance
refers to the variable Y. Later we will need to take the
variance of X into account and will 2 to represent theuse SXh
variance of X within stratum h and SXYh to represent the co-
variance of X and Y within stratum h.

For simplicity and convenience assume that the sampling
N -n

fpc's h h, may be, Nh
ignored. Thus, dropping the fpc and substituting the variance

A

V (y6 )

Eq. (2.3) gives:
N 2 N 2

= r(J.) 2 SYh = (J.)2 SYl
+ ••• +--nh nl

(2. 5)

is constant from stratum to stratum which means
Since the
fraction,

that

sampling
nh
Nh

specifications called for a constant sampling

nl =
nL n

N:'"'= Nt = N1

where rnh = n and rNh = N

Substituting N for
nh in Eq. (2.5) and simplifying the ex-Nh

pression we obtain
A N 1 NI 2 NL 2V (y6) = 1. r h S2 = n[W- SYI + ••• + fr SYL] (2.6)n fr Yh
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Exercise 2.5 Perform the atgebra that is necessary to

go from Eq. (2. 5) to Eq. (2. 6) •

For Plan 6, let
S~ .• rwhsih • wlsil + ••• + (2.7)

where

Since s~ will be replaced by corresponding variances that are
2 2involved later in Plans 7 and 8, let S6h = SYh so the notation

will reflect the number of the plan or estimator. Then Eq. (2.7)
becomes

and Eq. (2.6) simplifies to the following form
- 1 2V(Y6) .• (n)S6

(2.8)

(2.9)

where s~ is a weighted average of the within stratum variances.
2The values of S6h are recorded in Table 2.6 in the column

2 2headed S6h and the value of 56 is 1367 which is recorded in
the line labeled "Separate." The reason for calling this line
"Separate" will be explained later.

For purposes of comparing variances for alternative plans
the choice of a sample size is arbitrary. Previously, the
sampling variances for alternative plans were compared assuming
n = 1. Even though it is impossible to select a stratified
random sample of only one unit, it is possible to let n = 1

A

in Eq. 2.9 and regard the variance of Y6 as the sampling
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variance for a hypothetical sample of one unit. As with simple
random sampling, a stratified random sample of n units would
have a sampling variance equal to ~ times the sampling vari-n
ance for a hypothetical stratified random sample of one unit--
provided n is large enough so the nh, which must be integers,
are approximately in proportion to Nh. Remember, these numer-
ical examples are being worked as though the sampling fraction,
fh, is constant and small.

A

Exercise 2.6 Calculate the variance of Y6 assuming

n = 1. In other words, find the value of S~. Also, calculate
~

the relative variance of Y6 when n = 1. Your answer should
A

agree with the relative variance of Y6 which is recorded in

Tab l e 2.?

Exercise 2.? Since Y6 is an

estimate of the population total.

NY6 for n = 1. Ans. 4991.

estimate of Y, NY6 is an

Find the standard error of

2.3.2 PLAN 7--RATIO ESTIMATORS BY STRATA -
Plan 7 is the PIan 6 that (Xh

Yhsame as except -)- ,xh
instead of - is used in Eq. 2.2 an estimator of theYh' as
stratum mean, Yh· Thus ,

- Nl
- NL -Nh _ Yh (Xl Y1 (XL YL (2.10)Y7 = L N(Xh -- ) = N :--) + ••• + N -- )xh Xl XL

The derivation of the relative variance of Y7 follows the
derivation in Plan 6. Simply replace the variance of Yh in

so



-
- YhEq. (2.3) with the variance of (Xh ~). The variance of

xh-- Yh(Xh ~), ignoring the fpc, is
xh

where

2 2Notice that S7h is the same as S2 in Table 1.1 except that
S~h is a variance within stratum h rather than a variance over
the whole population. Substituting S~h for S~ in Eqs. (2.5),
(2.6), and (2.7) leads to the following results:

where

(2.11 )

The values of 2 2 in Table 2.6 .S7h and S7 are presented

Exer>aise 2.8 The estimator> Y 7' Eq. (2.10) lJas expr>essed,
in a for>m to sholJ its similarity to Y6. Is ther>e a modifiaa-

tion of Eq. (2.10) that lJould be better> fOr> aomputing the value
~ ~

of Y7 fr>om sample data? HOlJ lJould you aompute the value of Y7
fr>om a sample?

Exer>aise 2.9 Fr>om the data pr>esented in Table 2.6, find
~

the r>elative var>ianae of Y7 fOr> n = 1. The anSlJer, 0.279, is

in Table 2.7. HOlJ lJould you explain lJhy the sampling var>ianae
~ ~

for Y7 is less than the sampling varianae fOr> Y6?
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The sampling variance for Plan 2 (no stratification and
the ratio estimator) was 0.382 compared with 0.279 for Plan 7
(stratification and separate ratio estimators by strata). The
geometrical interpretation of the sum of squares for Plan 7
compared with Plan 6 is analogous to Plan 2 compared with
Plan 1. Horizontal lines for Plan 6 (one for each tree) are
replaced by lines through the origin and the stratum means of

•..
X and Y. With the ratio estimator, Y7' the effect of strati-
fication depends on how much the ratio lines differ among
strata. More will be said later about stratification and
ratio estimators.

Exercise 2. 10 Notice with reference to Eq. (2. 10) that

NhXh is the population total of X for stratum h. Let

Xh = NhXh and substitute Xh in Eq. (2.10) which gives

- -
= 1 I:Xh

Yh 1 [Xl
Yl + ...+ XL ~L]Y7 N = N- -xh xl xL

With Y7 in this form, write a formula for the varianae of Yr

2.3.3 PLAN 8--REGRESSION ESTIMATORS BY STRATA
Plan 8 is like Plans 6 and 7 except that the regression

estimator (see Plan 3, Chapter I) is used stratum by stratum.
Thus, instead of Eq. (2.2) or (2.10) we have

N
h

_
Y8 = I:{~ [Yh + bh(Xh - xh)]}

Nl NL= ~ [Yl + bl(Xl-xl)] + ...+ ~ [YL+bL(XL-xL)]

S2

(2.12)



"-In the derivation of the variance of YS' the variance of
Yh+bh(Xh-xh) replaces the variance of Yh in Eq. (2.3).

A

This leads to an equation for the variance of Ys which is
A A

similar to the variances of Y6 and Y7• Thus,

where

and

(2.13)

where rh is the correlation between X and Y within stratum h.
A

Exercise 2.11 Find the relative variance of Ys for n = 1.
A

Compare your result with the relative variance for YS that is

recorded in Table 2.7.

2.3.4 DISCUSSION OF PLANS 6, 7, and S
Compare the estimators, Y6' Y7' and YS' and their vari-

A A

ances with Y1' Y2' and Y3' and their variances, Table 2.7. In
essence each stratum in Plans 6, 7, and 8 is treated as a
separate population and the estimators and their variances with-
in each of the strata are combined using appropriate weights.
Geometric interpretations of the sampling variances with refer-
ence to sums of squares is analogous to the interpretations given
in Chapter I for Plans 1, 2, and 3. There is one line for each

A'" A

stratum and each of the estimators, Y6' Y7' and YS.
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Figure 2.3 presents a dot chart for each of the six trees.
For each tree, the solid line is the ratio line involved in Y7

Aand the broken line is the ratio line for Y2' no stratification.
A A

As recorded in Table 2.7, the relative variances of Y7 and Y2
are 0.279 and 0.382 respectively. This indicates the degree to
which the 6 ratio lines fit the data better than the single

Aline. Figures analogous to Fig. 2.3 could be prepared for Y6
A A ~ A

compared with Yl' for Y8 compared with Y3' for Y8 compared with
Y7' etc.

"Separate stratum estimators like Y7 and Yg are seldom used
in practice. However, Plans 7 and 8 were included for compara-
tive purposes and further understanding of possible alternatives.
There will be additional discussion of these plans after Plans
9, 10, and 11 have been presented.
2.3.5 PLAN 9--COMBINED RATIO ESTIMATOR

Instead of making a ratio estimate for each stratum and
combining the separate stratum estimates, the data from the
strata are combined before computing a ratio. Likewise, in
Plan 10, results for individual strata are combined and used to
determine a "combined regression estimator." This explains the
two titles "Separate" and "Combined" in Table 2.6. The "Separate"
line contains averages of within stratum variances for Plans 7,
8, and 11 which use separate stratum estimators. The entries
in the "Combined" line pertain to the combined stratum estima-
tors in Plans 9 and 10. The distinction between separate and
combined is not applicable to the mean estimator, Plan 6.

54



S2 is shown in both lines of the table.6
The "combined ratio estimator" is

-
= X

YsYg -Xs

where - Nh _
Ys = Er Yh

Nh -Xs = !;- xhN

(2.14 )

The letter "s" in ys and xs is used to indicate that ys and xs
are means that pertain to a stratified random sample.

A

To find the variance of Yg' it is convenient to remember
that the large sample approximation of the relative variance
(RelVar) of the ratio of any two random variables u and v is

RelVar(u) = RelVar(u) + RelVar(v) - 2RelCov(u,v)v

Therefore, since y and x are random variables we haves s

RelVar(Ys)=RelVar(y )+RelVar(x )-2RelCov(ys'x) (2.15)- s s s
Xs

A

Exeraise 2.12 Verify that the relative varianae of Yg

-
Ysis equal to the relative varianae of the ratio, _
Xs

-With reference to Eq. 2.15, notice that Ys is the same as
A

Y6' We found for Plan 6, Exercise 2.6, that the RelVar of Y6'
and therefore of y , was 0.512 for n = 1. The RelVar of x iss s
determined in the same way. According to Table 2.6, the average
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within stratum variance
RelVar(x ) for n = 1 iss

-2of X is 0.2566 and X = 2.0240.
0.25662.0240 = 0.127.

Thus,

Ezercise 2.13 Find the average within stratum covariance

of X and Y in Table 2.6. Then find the value of RelCov(ys'xs)
for n = 1. Ans. 0.166.

-
YsAccording to Eq. (2.15) the RelVar of _ is
Xs

0.512 + 0.127 - 2(0.166) = 0.307
A

Therefore, the RelVar of Yg is 0.307. This answer is recorded
in Table 2.7.

Ezercise 2.14 Start with Eq. 2.15 and show that the
A

variance of Yg is given by

V(Yg) = V(Ys) + R2V(Xs) - 2R[Cov(ys'xs)]

then multiply the right hand side of Eq. (2.15)

the value of V(Ys)' vex ), Cov(y ,x ) and R are given in thes 5 S
"Combined" line of Table 2.6. Using these values compute the

where
y

R =
X

Suggestion:
A _ 2 A

Notice that V(Yg)=Y [Re1Var(Yg)],
-2by Y. For n = 1

A

value of V(Yg)' The answer is 817, which is also in the "Com-

bined" line.
A

Ezercise 2.15 Beginning with the variance of Yg as ezpressed

algebraically in Ezercise 2.14, show that

V (A) = 1 52
Yg n 9
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whel'e

and

S~ = ~WhS~h

S~h = S~ + R2Sih - 2RSXYh

Suggestion: Since Ys and Y6 al'e the same you may l'efel'to

Eq. (2.9) to obtain the appl'opl'iate fOl'muZa fol' V (y ).
S

FOl'muZas for vex ) and Cov(x ,y ) al'e anaZogous. Compal'es s s
2 2Sgh with S7h·

A

Exel'cise 2.16 Continuing fl'om the fOl'muZa fol' V(Yg)
which is given in Exel'cise 2.15, show that

"V(Yg)
2r (Yh· - RXh. )

1 .11= n [rWh1 N -1 ]
h h

The formula for the variance of Yg' which is given in
Exercise 2.16, shows that the deviations which are squared
are deviations from a line through the origin and (X,Y) where
X and Yare the overall means of X and Y. This line for the

A

combined ratio estimator, Yg' is the same as the line pertaining
to Y 2' the ratio estimator without stratification. Thus, if

A

Yg has a lower variance than y 2 it is attributable to the effect
of stratification which assures proportional representation in
the sample by strata. That is, there is proportional repre-
sentation by strata of the deviations of Y. from the combined

1

ratio line. In Plan 7 there was proportional representation
A

and separate ratio lines by strata. RelVar of Yg was 0.307
A A

compared to 0.382 for Y2 and 0.279 for Y7 (see Table 2.7).
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2.3.6 PLAN lD--COMBINED REGRESSION ESTIMATOR
As in the case of the combined ratio estimator, data

for strata may be combined and a single (or combined) regres-
A

sion used instead of separate regressions. The estimator, YlD'
A

for the combined regression looks like Y3 but it is an average
within stratum regression that is determined from combined
within stratum variances and covariances. Since the sampling
fraction is constant, the appropriate weights for combining the

Nl NLwithin stratum variances and covariances are ~, ..., ~ which
are the same weights used previously for combining variances.
The combined within stratum variances of Y and X, 1367 and
.2566, and the combined within stratum covariance, 12.23, are
shown in the "Combined" line of Table 2.6. These numbers are
needed for computing the "Combined" regression coefficient,
the "Combined" correlation coefficient, and the variance of
YlD for n = 1, which are also shown in the "Combined" line of
Table 2.6. The corresponding numbers for sampling without
stratification are shown in the last line of Table 2.6.

Algebraically
- + b (X - x ) (2.16)YlD = Ys s s

where bs
SXY= ;:rSx

SXY = EWhSXYhh
-2 2 andSx = EWhSXhh

Wh =
Nh
~
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Notice that lower case letters, x and y, are used in the
definition of b to indicate that it is computed from samples
values. In Table 2.6, the value of Bs is shown which is the
population value that bs is an estimate of. The bar in the

- -2 --2expression SXY and Sx indicates that SXY and Sx are averages
of within stratum covariances and variances. (Previously,

2 2we had used Sy' SX' and SXy to represent the overall variances
and covariances without stratification.) The subscript "s"
is used as a code indicating that stratified random sampling
and combined-stratum estimation are involved. To recapitulate,
bh is a least squares estimate of the regression coefficient
within stratum h, b is an estimate of the combined regressions
coefficient in the combined regression estimator, and b is the
least-squares regression coefficient computed from a simple
random sample without stratification.

The variance of YlO is

where

and

" 1 2V (Y10) = (N")SlO (2.17)

2 -2 2SIO = S (1-r )y s
-2 2Sy = I:WhSYhh

SXY
rs =

Vsi s~
"The variance of YlO involves squares of the deviations of Yi

from a line with a slope equal to Bs that passes through (X,Y).
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Remember the assumptions and that the variance formula is a
large sample approximation. Further discussion of the basis

A

for the formula for the variance of YlO will be omitted. For
more detail the reader is referred to Cochran.!/

Exercise 2.17 Verify that the regression coefficient for

the combined within stratum regression is 47.7 and that the

combined within stratum correZation coefficient is 0.653. Then

verify that the reZative variance of YlO is 0.294 for n = 1.

2.3.7 PLAN ll--SAMPLING WITH PPS WITHIN STRATA
As in Plan 4, sampling with replacement is assumed for

simplicity. That is, in stratum h the probability of the ith

sampling unit being selected on any given draw is proportional
to Xhi.

where

The estimator is
N A

Yll = L (~) Yllh (2.18)
h

Xh Yho
Yllh = (_) E_1

nh ixhi
A

Notice that Yllh is like Y4' the difference being that Yllh is
an estimate of the stratum mean Yh whereas Y4 is an estimate
of the population mean Y. Also, notice that the estimator,
A A

Yll' can be obtained by substituting Yllh for Yh in Eq. 2.2.

i/ Cochran, W. G., Sampling Techniques, Second Edition,
Chapter 7. John Wiley & Sons, Inc., 1963.
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,.
It follows that the variance of Y11 can be obtained by substi-

,. ,.
tuting the variance of Y11h for the variance of Yh in Eq. (2.3).

,. ,.
Owing to the similarity of Y11h and Y4 the formula for

,.
the variance of Y4 is applicable. Simply add a subscript h

,..
in the formula for the variance of Y4' which gives

V(Y11h) = (1-)(1 )EP "(Yhi _ Y )2nh Nr i hl Phi h

where

EYh". 1
1

and

,..
Substitution of V(Y11h) in Eq. (2.3) gives

(2.19)

As in the derivation of 2.6, assume that nh is propor-
tional to Nh, which means that nh = (~)Nh. Substituting
(N)Nh for nh in Eq. (2.19) leads to the fOllowing which ex-

,..
presses the variance of Y11 in a form like that used for the
other estimators:

where

and

,.. 1 2
V (Y11) = (n)Sll

2 2Sll = ~WhS11h
1

1 Yhi 2= ~ EPh" (w-- - Yh)Nh i 1 Yhi

61
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2Like the variances for the other estimators, Sll is a weighted
average of the appropriate within stratum variances. The

2within stratum variances, Sllh' are presented in Table 2.6 and
2 "Sll' the variance of Yll for n = 1, is recorded in the "separate"

line.

Exercise 2.18 Using the data in Table 2.1, find the value
2of Sllh for h = 1. Check your ans~er ~ith the value recorded

in Table 2.6. Is there a better expression than the one given

above for finding the values of Silh?
Exercise 2.19 From the data by individual trees that are

"
presented in Table 2.6, find the RelVar of Yll for n = 1 and

check your answer with the value of Sil that is recorded in

Table 2.7.

A geometrical interpretation of the variance of Yll is a
matter of making an interpretation for each stratum and judging
the average situation over all strata. For this purpose

"reference is made to the discussion of Y4 in Chapter I.

2.3.8 SUMMARY AND DISCUSSION
Sampling variancffifor 10 out of 11 plans are presented

In Table 2.7 for terminal branches as sampling units. Plan 5
was not applied to terminal branches. All of the plans have
an important practical shortcoming. It is necessary to define,
label, and list all terminal branches on a tree before it is
sampled. Some ways of avoiding this will be discussed in
Chapter III. However, Chapter II was intended as an exercise
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in the use of theory to find the variances for alternative
sampling and estimation plans and as a study of the differ-
ences in the variances for several alternatives.

As you gain experience through evaluations of sampling
plans you will become increasingly aware of prevailing patterns
of variation. You will observe manifestations of the general
tendency for things to be stratified in space or time, or the
tendency for things that are close together in space or time
to be alike. There are exceptions. For example, in a field
where the plant population is very dense there might be a
negative intra-plot correlation among plants within very small
plots owing to competition between adjacent plants.

From the results in Table 2.7 we find that the two plans
with the largest variance are Plans I and 6. Neither plan
makes use of size of branch as an auxiliary variable. The
reductions in variance from use of csa as an auxiliary variable
are substantial. This strongly suggests exploration of practi-
cal ways of using csa as a measure of branch size unless it is
possible and feasible, when determining terminal branches, to
restrict the sizes within narrow limits.

The variances for "separate" ratio and regression esti-
mators are moderately less than the corresponding variances
for the "combined" ratio and regression estimators. A small
difference in favor of "separate" estimators is indicated by
general experience and mathematical considerations. However,
"combined" ratio or regression estimators are generally used
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in practice because: (1) they are more convenient; (2) in some
situations, bias in the "separate" estimators is appreciable
relative to the standard error; and (3) the variance formulas,
which are large sample approximations, are better approxima-
tions for the "combined" estimators. Separate ratio or
regression estimators might be preferable to combined esti-
mators when the number of strata is very small and the ratios
or regressions differ widely among the strata.if

With stratified random sampling, sampling variance is a
function of variation within strata. It is generally better
to judge the impact of stratification by considering within
stratum variation than by the differences among strata. Making
a choice between two alternative methods of stratification
solely on the basis of differences among strata could In some
cases be misleading. For example, the variance among the means
of four strata could be much larger than the variance among the
means of 30 strata. That does not necessarily mean that the
sampling variance for the four strata will be the least. Also,
the effect of stratification and of optimum allocation among
strata are not independent of the method of estimation.

In the preceding discussion, stratification was considered
as a matter of reducing sampling varIance. In the design of
a sample for a survey, attention needs to be given to the
domains (subpopulations) for which estimates are important.

~f See Cochran, Sampling Techniques, for a discussion of the
properties of the separate and combined estimators.
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This might be a primary determiner of the stratification and
allocation of the sample. The sampling variances of domain
estimates depend, among other things, on how close the bound-
aries of strata for sampling purposes correspond to the domains
for which estimates are required.
2.4 FURTHER COMPARISON OF SAMPLING WITH PPS TO STRATIFIED

SAMPLING WITH OPTIMUM ALLOCATION
In Chapter 1, sampling with PPS was compared to stratified

random sampling with optimum allocation to strata. The data
for terminal branches provide a better set of data for study
of sampling with pps including the possibility of a transfor-
mation of X or Y to reduce sampling variance. For this purpose,
five size-of-branch strata based on csa will be used. Table 2.8
shows the definition of these strata and presents key informa-
tion about the five strata. (Reference is made to Sections 1.2.5,
1.2.6, and 1.3.1 on sampling with pps and stratified random
sampling with optimum allocation.) For stratified random
sampling using the mean estimator, Eq. 2.2, the optimum sampling
fraction for stratum h is given by

In previous comparisons we assumed n = 1. Hence, we are inter-
ested in the values of

(2.21)
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which are presented in Table 2.9. The values of fh are the
sampling fractions within strata for a hypothetical sample of

X.
1one branch and are comparable to the probabilities Pi = X- for

selecting one branch with pps, where X. is the csa of the ith
N 1

branch and X = EX .. Let Ph equal the average value of P. for
1 1

the branches in stratum h. The values of Ph are presented in
Table 2.9 for comparison with values of fh.

Exepaise 2.20 Vepify the values of fh and Ph in Table 2.9

fop one op two of the stpata. The data ppesented in Table 2.8

ape suffiaient fop this puppose.

The values of fh and Ph agree quite well, which means the
probability of a branch being in a sample is roughly the same
for both methods, except for variation of P. within a stratum.

1

The next question is how well do the lines that are involved
fit the data. Turn to Figure 2.4. The points appear to fit
horizontal lines (which are not shown) for stratified random
sampling approximately as well as the line through the origin
and (X,Y) for pps.

The variance for sampling with pps, Plan 4, has already
been obtained. According to Table 2.2 it is 0.319. For the
stratified sampling with optimum allocation, which will be
called Plan 12, the estimator of Y is

(2.22)
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and the variance of Y12 is given by

" = 1:.(S2)V(Y12) (2.23)n 12

where 2 rNh SYh 2
S12 = ( N )

Exercise 2.21 Using the data in Table 2.8, find the
"

Be l Val' of Y12 for n = 1. Ans. 0.273.

Exercise 2.22 From Eqs. (2.5) and (2.21) derive alge-
A

b1'aically the variance of Y12 which is given by 2.23.

In this example, the Re1Var for stratified random sam-
pIing with optimum allocation was 0.273 compared with 0.319
for sampling with pps. The difference in variance is attrib-
utable to the difference in probabilities of selection and to
how well the lines that are implicitly involved fit the data.

A question posed earlier was whether some transformation
of X might provide a better measure of size for pps sampling.
A simple transformation would be X: = X. + C, where C is a

1 1

constant and X: is the transformed variable. The least squares
1

regression line, see Figure 2.4, crosses the horizontal axis
at 0.46. Since the least squares line fits the data "better"
than any other straight line the transformation Xi - 0.46 is
suggested. With this transformation the least squares and
pps lines become the same. But, with the transformation
X. - 0.46 the maximum values of y. do not approach zero as
1 1

X: = X. - 0.46 approaches zero which indicates that the trans-
1 1

formation is not a good one. However, it is informative to
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make the transformation.
X~
1Instead of Pi = X- ' we now have

X~ - 0.46
1Pi = r(X.-0.46) .

1
The average values of P: within strata,

1

The

which are labeled Ph' are presented in Table 2.9 for compari-
son with the values of Ph and the optimum sampling fractions,
~.

When X. is used as the auxiliary variable, the relative
1

variance is 1.403 compared to 0.319 when Xi is the auxiliary
variable. The relative variance for Plan 1 was only 0.660.
Thus, the transformed variable x: results in an increase in

1

variance compared to simple random sampling with equal proba-
bilities of selection. Before transformation, the selection
probabilities for sampling with pps were .0032 and .0140 for
the smallest and largest branches and were .0012 and .0171
after transformation. Thus, the range in the selection proba-
bilities were greatly increased by the transformation from a

.0140 t f t f 14 2 - .0171factor of 4.3 = .0032 0 a ac or 0 . - .0012

transformation does not effect the optimum sampling fractions,

Exercise 2.23 Verify t~o of the vatues of Ph that are

presented in Tabte 2.9.

Exercise 2.24 Verify that ~hen the transformation

X~ ~ X. - 0.46 is made the pps tine and the teast squares
1 1

regression tine become the same.
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With reference to Figure 2.4, consider two lines through
the origin that represent maximum and minimum values of Y.
(See Figure 1.2 in Chapter I which was portrayed as a good
case for pps). As an approximation, theory suggests that a
good measure of size is one that is proportional to the differ-
ence between two lines representing the maximum and minimum
values of Y. A look at Figure 2.4 with this in mind suggests
that a transformation such as X~ = X.

1 1

possibility for reducing variance.
0.46 is not a good

Exercise 2.25 Refer to Table 2.8 and for each stratum

divide SYh by Xh and examine SYh as a proportion of Xh. Does

this indicate that a transformation of X would be advisable?

Ans. No. A transformation of X is not indicated and one should

accept csa as a measure of size unless there is evidence to the

contrary from other sources.

Table 2.10 provides a comparison of variances for four
plans when X and X'= X - 0.46 are the auxiliary variables.

Exercise 2.26 Explain why the transformation of X to X'

has no effect on the variances for Plans 3 and 12.

Exercise 2.27 From the data presented in the last line of

Table 2.6, compute the RelVar of the ratio estimator (Plan 2)

after the transformation, that is, when X~ = X. - 0.46 is used
1 1

as an auxiliary variable instead of X .• Notice that a trans-
1

formation of this kind does not affect the variance or covariance,

but the value of R is changed.
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We have established that the csa of a branch is a good
measure of size with regard to probabilities of selection.
Judging from Figure 2.4, the least squares line and the ratio
line differ enough to raise a question of transforming Y in-
stead of X. It would be possible to add a constant to Y so
the least squares regression line for X and Y' (where Y'= Y+C)
would pass through the origin and be the same as the ratio line
involving X and Y'. Such a transformation would not change the
selection probabilities and it appears that an appreciable
reduction in variance might be obtained.

Exercise 2.28 Find the vatue of C in Y'= Y+C such that

the regression tine for X and Y' witt pass through the origin.

Ans. C = 24.

Consider the result from Exercise 2.28 and the transfor-
mation Y'= Y + 24. The estimator of Y, without stratification,
would be

n y.+24
y = .!.. (X) (E 1 ) - 24n x·

1 1

The RelVar of y is 0.294 which is about 8 percent less than
0.319, the Re1Var for Plan 4. If it is necessary to estimate
C from the sample, the variance of C must be taken into account
and there is no gain from the transformation. However, if
there is good prior information about the value of C, the
possibility of the transformation Y+C might be worth considering.

When considering sampling with pps, look for a measure of
size that is close to being proportional to Y .. If Y. is

1 1
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y.
exactly proportional to X., the ratio Xl is constant and the

1 .
1

sampling variance lS zero. Also, the situation is a good one
for sampling with pps when the standard deviation of Y for a
fixed value of X is proportional to the value of X.

In stratified random sampling some statisticians, in the
absence of a better basis, allocate a sample to strata accord-
ing to estimates of the proportion of the total that each
stratum accounts for. For example, stratum 5 accounts for
23 percent, 1634 of the apples so 23 percent of the sample6973 '
would be allocated to stratum S. Only 8 percent of the sample
would be allocated to stratum 1 even though it contains 21
percent of the branches. In practice, prior data often pro-
vide an estimate of the proportion of the population total that

"each stratum accounts for. Thus, the size of sample, nh, for
stratum h would be

" "nh = Ph n (2.24)

"where Ph is the proportion that stratum h accounts for and n
lS the total size of the sample. The sampling fraction for
stratum h is

" "
" n P

fh = ( -1!.) = ( -1!.) nNh Nh
and for n = 1

"
" Phfh = Nh
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"" PhThus, fh = ~ compares with the sampling fractions (or selec-
h

tion probabilities) for the methods discussed previously.
"Values of fh for the numerical example on apples are in

Table 2.9.
"Exercise 2.29 Verify two of the values of fh.

Allocating a sample to strata in proportion to prior
estimates of the amounts that the strata account for is a
good plan where the coefficients of variations of Yare nearly
constant among strata. In Table 2.8 notice that the coeffi-
cient of variations tend to decrease as the branch size
increases. This phenomena appears very frequently. The fact
that the first stratum has the highest coefficient of variation
means that the sample for the first stratum should be larger

"than nh, given by Eq. 2.24. This is also indicated by the
"comparison of fh and fh. As a "rule of thumb," some statis-

ticians have adopted a practice of allocating a sample according
to (2.24) and then doubling the size of the sample for the first
stratum and increasing the sample for the second stratum by
SO percent. Small departures from an optimum allocation have
a negligible impact on variance. Moreover, in practice an
exact optimum allocation cannot be achieved because exact
values of within stratum variances are unknown.
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Tree No. 1 Tree No. 2 Tree No. 3 Tree No. 4 Tree No. 5 Tree No. 6
CSA. No. of CSA No. of CSA. No. of CSA No. of CSA No. of CSA.No. of

Apples Apples Apples Apples Apples !APples
X Y X Y X Y X Y X Y X Y

.62 2 1.83 67 2.68 206 1.93 97 1.20 30 1.09 42

.97 15 1.99 45 .97 32 2.41 165 2.15 41 .87 25
1.27 12 1.12 51 1.48 73 2.24 124 .97 10 1.47 56

.72 32 1.93 54 2.32 138 2.41 143 1.15 8 1.91 116

.62 14 3.26 116 1.83 133 2.07 58 1.27 40 1.09 27

.97 5 1.14 51 . .97 32 1.54 75 1.15 14 1.15 46

.87 8 1.34 80 1.03 30 1.47 59 1.15 36 .62 2

.72 9 .87 0 1.43 27 1.43 92 .87 0 2.24 112
1.01 11 .92 58 2.24 88 1.47 82 .72 15 1.76 83

.97 7 1.76 19 .92 42 1.29 58 .92 2 .87 36
1.83 59 1.15 45 1.99 109 1.09 30 .67 13 .67 35

.87 5 1.17 33 1.47 74 1.21 36 1.54 57 1.03 59
1.03 34 1.03 41 1.64 56 .76 24 1.21 31 1.22 29

.62 42 1.54 116 2.41 230 1.61 8 1.00 25
N1 = 13 1.14 12 1.99 124 .72 35 1.54 32 1.09 61

1.27 25 1.83 79 1.03 75 1.54 26 1.09 27
~ 2.41 54 1.47 30 1.91 128 1.83 18 1.54 59
VI 1.27 14 1.21 31 1.18 0 1.83 17 1.34 25

1.35 35 1.91 41 1.16 47 1.34 4 1.68 77
1.07 39 1.47 16 1.15 34 2.68 120
1.03 30 1.15 23 N = 19 1.40 59
1.91 28 1.40 35 N = 20 5 2.07 64
2.07 129 1.42 61 4 1.47 83
1.67 108 1.76 116 1.21 19
1.61 123 3.26 88 1.83 16
1.61 63 2.59 50 1.03 26
1.27 26 .97 50

N = 26 .62 36
N - 27 3 1.27 48t(Y .-Y ) 2 2 - N = 135S2 1 = 1762 1.99 65= E X.-X Y. ~Y 6973Y N-1 tY =

E(X. -X)2
1
N-1 .2890

Table 2.1--Number of Apples and Cross Section Areas
(Terminal Branches)

= 15.46 EX 192.06 N - 30= 6 -
R 36.31
r = .6850

B = 53.49



Table 2.2--Relative Variances of Numbers of Apples Among
Primary and Terminal Branches

Relative Variances Among
Plan Estimator Primary Branches Terminal Branches

1 Yl 1.17 0.660
2 Y2 0.247 0.382
3 Y3 0.186 0.350
4 Y4 0.194 0.319

Table 2.3--Relative Variances of Numbers of Apples Expressed
in Terms of One Terminal Branch

Relative Variances Among
Plan Estimator Primary Branches Terminal Branches

1 Yl 5.639 0.660
2 Y2 1.191 0.382
3 Y3 0.897 0.350
4 Y4 0.935 0.319
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Table 2.4--Relative Variances Expressed as a Proportion of
the Variances for Plan 1

Plan
1

2

3

4

Primary Branches
1. 00

0.21
0.16
0.17

Terminal Branches
1. 00

0.58
0.53
0.48

Table 2.5--Re1ative Variances for Terminal Branches as a
Proportion of the Variances for Primary Branches

Plan
1

2

3

4

Primary Branches
1. 00

1. 00

1. 00

1. 00
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Terminal Branches
0.12
0.32
0.39

0.34



Table 2.6--Data for Six Trees y

<::2 2 2 2 Bh
2

Tree Nh Yh Xh v6h SXh SXYh Rh S7h rh S8h S11h

(Also 2SYh)
r..n 1 13 213 12.47 259 0.1019 3.50 17.08 169 0.681 139 34.3 139....•

2 27 1388 39.81 1147 0.3089 10.10 34.88 818 0.537 816 32.7 772
Xl 3 26 1850 43.97 2184 0.3301 16.64 42.07 1368 0.620 1344 50.4 1120
~ 4 20 1592 30.88 3106 0.2996 25.67 51.55 1256 0.842 904 85.7 1038

5 19 402 24.66 241 0.1563 2.66 16.30 196 0.433 196 17.0 182
6 30 1528 40.27 892 0.2479 11.22 37.95 397 0.755 384 45.3 364

Separate2/ N S2 52 S2 2
6 7 8 S11

135 xxxx xxxxx 1367 xxxxxx xxxxx xxxxx 745 xxxxx 682 xxxx 644

CombinedH Y X S2 -2
SXY R S2 R 2 BN Sx S106 9 s s

135 6973 192.06 1367 0.2566 12.33 36.31 817 0.653 784 47.7 xxxx

Overall4/ N Y X 52 S2 5XY R 52 r S2 B S2
1 X 2 3 4

135 6973 192.06 1762 0.2890 15.46 36.31 1020 0.685 935 53.49 852

1/ See text for explanation of symbols.

Jj Results in this line pertain to separate stratum estimators. 2 2 2S6' S7' S8' are averagesN
of the corresponding within stratum variances using Nh as weights. See Equations 2.6 and 2.7
and Exercise 2.13.

A

3/ Results in this line pertain to combined stratum estimators, Y9 and Y10·
!/ No stratification. Results pertain to the first four plans.

-...J
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Table 2.7--Summary of Sampling Plans--Estimators and Their Relative
Variances for a Sample of One Terminal Branch

Plan Method of 1/ 2/Sampling - E_s_t_i_ma_to_r_- _
Relative
Variance
for n = 1

1

2

3

4

6

7

8

9

10

11

A

A

A

B

c

c

c

c

c

D

mean

ratio

regression

p.p.s

mean

separate ratios

separate regressions

combined ratio

combined regression

p.p.s

-y = Xl2 -x

A

Y3 = Y + b (X - x)

A-I Y-
Y = X(-) E2.4 n x.

1

-- YsY9 = X -
xs

AY - Y + b (X - X )10 s s s
Nh Xh y.

Yll = hE-N (-) E~nh Xi

0.660

0.382

0.350

0.319

0.512

0.279

0.256

0.307

0.294

0.241

1/ A Simple random sampling without stratification
B Sampling with replacement and p.p.s without stratification
C Simple random sampling within strata (trees)
D Sampling with p.p.s within strata (trees)

2/ h is the index to strata
s as in Ys :efers to stratification. Thus ys is the mean of a
sample and y is the mean of a simple random sample.
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Table 2.8--ftata fcrr She-of-Branch Strata

SYh
No. of No. of -

Stratum Branch Size Branches Xh Apples Yh SYh Yh--
I .60-1.00 28 0.816 586 20.93 16.79 0.80
2 1.01-1.40 45 1.161 1500 33.33 17.22 0.52
3 1.41 -I"80 28 1. 543 1765 63.04 31.42 0.50
4 1.81-2.20 21 1.935 1488 70.86 39.53 0.56
5 2.21+ 13 2.550 1634 125.69 52.72 0.42--
Total or Average 135 1.423 6973 51.65

Table 2.9- -Sampling Fractions
.• .. "

Stratum fh Ph Ph fh
1 .0046 .0042 .0027 .0030
2 .0047 .0060 .0054 .0048
3 .0086 .0080 .0083 .0090
4 .0109 .0101 .0113 .0102
5 .0145 .0133 .0161 .0180

Table 2.10--Effect of Transformation

Relative Sampling Variance

Estimator
Ratio(no stratification)
Regression(no stratification)
PPS (no stratification)
Mean (stratification by size)

Plan
2
3
4

12

78

Before
Transformation

0.382
0.350
0.319
0.273

After
Transformation

0.350
0.350
1.403
0.273



Nwnb~r of apples on
termInal branch 3-2-4

Path section 3-1

Apples on path;:::?
, 11(

\rP.

- 41..

F"Igure 2.1--Map of apple t"d ree no 3 sh .
1 entification and ~ OWIng branchn er of apples
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CHAPTER III
RANDOM-PATH SAMPLING OF FRUIT TREES

3.1 INTRODUCTION
The methods discussed In Chapter II required a map of

each tree to be sampled. A map of a tree provides a good
sampling frame, but drawing a map and measuring the csa's of
all branches is too time consuming. In the research for prac-
tical ways of probability sampling, photographs of trees taken
when the trees had no leaves have been studied for possible
use as sampling frames, including the estimation of branch
sizes for sampling with pps. Photography has also been con-
sidered, in the context of double sampling, as a means of
counting and estimating the number of fruit on the tree.

In this chapter the random-path method proposed by Jessen~/
for sampling fruit on a tree will be illustrated using one of
the six apple trees in the analysis in Chapter II. Two random-
path methods will be compared with two methods that were dis-
cussed in Chapter II. The comparisons will be made as though
only one terminal branch from a tree is to be selected and
used to estimate the total number of fruit on the tree.

6/ Jessen, Raymond J., Determining the Fruit Count on a Tree
by Randomized Branch Sampling, Biometrics, March 1955.
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3.2 FOUR METHODS OF SAMPLING A TREE
The four sampling methods and estimators, as described in

this section, include only apples that are on terminal branches.
A small proportion of the apples are not on terminal branches.
Methods of including these apples will be discussed later.

(1) The first method is included primarily as a base for
comparIson. It is the same as Plan 1 discussed in Chapter II.
After all terminal branches on a tree have been identified and
numbered, one branch is selected at random with equal probability.
Apples on the sample branch are then counted. The estimator is
Ny. where N is the number of branches on the tree and y. is the

I I

number of apples on the sample branch. Since y. refers to a
1

sample value, one would expect i to be the index for branches
in a sample. But, we are considering a sample of only one branch
and it is convenient to let i be the index to branches in the
population. Thus, if the 5th branch in the population, Yl, Y2,
..., YN, happens to be selected, Yi = YS. The first method will
be referred to as DS-EP, which means direct selection from a list
of all branches with equal probabilities.

(2) The second method is a random.path technique. Beginning
from the bottom of the tree, the primary branches are all identified
and one of the primary branches is selected at random with equal
probabilities. The selected primary branch IS then examined to
identify all second-stage branches from it. Then, one second-stage
branch is selected at random with equal probabilities. The process
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is discontinued when a terminal branch has been selected. The
y.

estimator is p~ where Pi is the probability of selecting the
1

particular terminal branch that happens to be selected. As a
short title for this method RP-EP will be used where RP represents
random path and EP means equal probability of selection at each
stage of branching.

(3) Like the first method, the third requires a complete
identification of all terminal branches prior to selection. The
csa (cross sectional area) of each terminal branch is measured and
one branch is selected with pps, probability proportional. to csa.

y.
The estimator is X-! where x. is the csa of the selected branchx. ' 1

1

and X is the sum of the csa's of all terminal branches on the tree.
DS-PPS is the short title for this method, which is the same as
plan 2 in Chapter II.

(4) The fourth method is a random-path method which differs
from method two in the probability of selection. At each stage
of branching the csa's of the branches at that stage are measured

and one branch is selected with pps.
y.

The estimator, -! is likep. '
1

the estimator for the second method but the values of P. are
1

different. This method is titled RP-PPS.
3.3 BRANCH IDENTIFICATION AND DESCRIPTION OF DATA

Data for tree No.3, which was represented in Figure 2.1,
are presented in Table 3.1 in a way that shows the stage of
branching. There were only three primary branches. Their csa's
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11.60, 13.45, and 12.84, are presented in the column titled csa
under 1st stage. The sum of these csa1s is 37.89. Thus, if a
primarj branch is selected with pps, the
would have a selection probability equal

first primary branch
11. 60to 37.89. For further

illustration of the recording system, notice that the second digit
of the identification number shows four second-stage branches from
the second primary branch. The csa's of these four branches and
their sum are recorded under 2nd stage. This scheme of branch
identification and recording is continued until a terminal branch
is reached. When this occurs, the number of apples on a terminal
branch is recorded to the right of its csa. Thus, Table 3.1 shows,
for example, that branch 2-,3was a terminal branch with a csa equal
to 1.99 square inches and that it had 124 apples on it. The numbers
In parenthesis are numbers of "path" apples which will be discussed
later.

Terminal branches were defined as branches having a csa
between 3/4 and 2 square inches. Adherence to exact size is not
possible. For example, the first terminal branch 1-1-1 has a csa
equal to 2.68 and is large enough so an additional stage of branch-
ing was probably considered. If from 1-1-1 there were two branches.
of about equal size, those two branches would have been terminal
branches. Probably 1-1-1 divided into several branches that were
too small to be considered as terminal branches. As another case,
suppose at the last stage of branching there is a branch with a
csa of 1.5 square inches which is dying and clearly has no fruit.
This branch could be shown on the map but marked for exclusion and
not counted as a branch for sampling purposes.
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Along a path from the base of a tree to a terminal branch
there are some branches which are much too small to qualify as
terminal branches. Fruit on small branches along a path to a
terminal branch have been called path fruit and must be ac-
counted for in some way. For example, on the path from the
base of 1-2 to the bases of 1-2-1 and 1-2-2 there were three
apples. These three apples are recorded in Figure 2.1 and in
Table 3.1 next to the csa of branch 1-2. The counts of apples
along the paths are shown In parenthesis in Table 3.1 to dis-
tinguish such apples from apples on the terminal branches.
There are various ways of dealing with the path fruit; but,
first let us examine the probability of selecting any given
terminal branch with regard to each of the four methods.

3.4 PROBABILITY OF SELECTION AND ESTIMATION
With the DS-EP method each one of the 26 terminal branches

has a selection probability equal to~. With DS-PPS the ith
X.

terminal branch has a probability of selection equal to Xl where
X. is its csa and X=EX .. Calculating the probabilities for the
I I

random-path methods is more involved. For example, consider
terminal branch 1-2-1-2 and RP-EP. In Table 3.1 notice that
the numbers of branches at each stage on the path to terminal
branch 1-2-1-2 are 3, 5, 2 , and 2. Thus, the probability of
selecting branch 1-2-1-2 is c}) c~ c~ c~ 1 which is= ~,5 2 2
the product of the probabilities of selection at the four
stages. With RP-PPS the product of corresponding probabilities
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at the four stages is (11.60) ( 5.61) (4.13) (2.32) = 0486237.90 14.94 s:96 3.80 .
An estimator for each of the four methods was presented

above. However, all of the four estimators can be written in
the same form,

Y .. =
1

y.
1

p.
1

(3.1)

A

where y. IS the estimator and 1 = 1, 2, ... , N is the index
1

to terminal branches on the tree. If the ith branch happens
Yito be selected, then is the estimate of the total numberPi

of apples on the tree (except that path apples are not in-
cluded) where y. is the number of apples on the ith terminal

1

branch and Pi IS the probability of selecting it. The value
of Pi depends on the method of sampling. In fact there are
four sets of probabilities, one for each method. These four
sets of values are presented in Table 3.2 in the columns headed

~ ~ A A

PI' P2, P3, and P4· The columns headed Y1' Y2, Y3, and Y4 con-
tain estimates of the total number of apples on the tree
depending upon the terminal branch that happens to be selected.
A discussion of these estimates follows.

Exercise 3.1 Refer to Table 3.1 and for each of the four

sampling methods compute the selection probabilities for termi-

nal branches 2-3 and 3-2-4. Compare your answers with the

probabilities presented in Table 3.2.

To include the path apples there are at least two possi-
bilities that might be considered with regard to the DS-EP and
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DS-PPS methods: (1) Count all path apples and add the count to
the estimate of the total number of apples on terminal branches
that is obtained from a sample of terminal branches; (2) Define
sampling units that are sections of path between the base of
the tree and the terminal branches. Then select a sample of
such sections to estimate the path fruit.

With the random-path methods, it is necessary to count the
apples on each section of the path along the path to a terminal
branch. Also, it 1S necessary to determine the probability
that each section of the path had of being in the sample.

Since the RP-PPS method is of pr1mary interest, it will
be used to illustrate how the path fruit can be accounted for
in the estimation process. Consider the three apples (see
Table 3.1) on the path section 1-2 which is the section between
the base of 1-2 and the third stage branches. To find the
probability of these three being in the sample, consider re-
peated application of a random-path sampling method. These
three apples will be in the sample whenever this path section
is traversed. Therefore, under the RP-PPS method, the proba-
bility of this path section being in the sample is
(11.60) (5.61) 1150 h" h" 3 26 lIt37.89 14.94 =. w IC gIves .1150 = . app es 0

be included in the estimate whenever this path section is
traversed.

It is important to observe that a random path always ends
with one and only one terminal branch. There are three termi-
na1 branches, 1-2-1-1, 1-2-1-2, and 1-2-2 that are connected
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to the path section 1-2, and 26.1 would be included in the
estimate that is made from the selected terminal branch that
follows path section 1-2. There are no path apples other than
the three that have been mentioned between the base of the tree
and the three terminal branches that follow path section 1-2.
Therefore, the estimated total number of apples in the event
anyone of the three terminal branches is selected would be:

Terminal Branch Estimate

1-2-1-1 3 + 73 2379.1150 .03103 =

1-2-1-2 3 + 138 = 2863.1150 .04864

1-2-2 3 + 133 3794.1150 .03530 =

With the application of either random-path method, and
assuming path fruit are recorded for each path section that
is traversed, an estimator that includes path fruit can be
written in generalized form. It appears to be complicated,
but an illustration follows that should help clarify it. The
estimator is:

..•Y. =
1

+ ••• +
Yki

(P .) ... (Pk . )01 1
+ ••• +

Yti
(Poi)'" (Pti) (3.2)

where 1 = 1, 2, ... , N is an index of the terminal branches

k = 0, 1, ... , t is an index of the path sections of
the path to the ith terminal branch (t is not
constant, it depends on i),
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Yki = the number of path fruit on the kth path section
of the path from the base of the tree to the ith

terminal branch,

Pki = the conditional probability of selecting the
kth path section of the path to the ith terminal
branch, given that the preceding path section has
been selected.

When k = 0, the path section referred to is the part of
the tree between ground level and the bases of the pr~mary or
first stage branches. Given that the tree is in the sample,

P - 1 which means that this path section is a part of theoi -
path to every terminal branch. Generally, Yoi' the number of
fruit on this section of the tree, will be zero. When k = t,
the kth path section becomes a terminal branch, thus Yti is
the number of apples on the .th . 1 branch, and is1 termlna Pti
the conditional probability of selecting the .th terminal1

branch given that the path section that it is connected to
has already been selected.
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Suppose application of the RP-PPS method leads to terminal
branch 1-2-1-1. In this case, k = 0, 1, 2, 3, 4 and the values

of Yki and Pki are:

No. of apples Conditional
Path section on path section, Yki probability, Pki

0 0 1

1 0 11.60 . 306137.89 =

2 3 5.61 = .375514.94

3 0 4.13 = .69305.96

4 73 1. 48 = .38953.80

Substituting these values of Yki and Pki in the estimator,
(3 .2), give s :

(0) (O~ (3)lIT + (1) (. 061) + (1) ( . 3061) ( • 3755) +

+ (1)(.3061)(.3~~~j(.6930)(.3895) = 2379

(0)
(1) (.3061) (.3755) (.6930)

Exercise 13.2 For the RP-EP and RP-PPS methods use the

estimator (3.2) to obtain estimates corresponding to terminal

branches 3-1-2, 3-1-4-1, and 3-3. Your results should agree

with the estimates presented in Table 3.2.
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There is an alternative view of the above method of in-
eluding the path fruit which leads to the same answers. The
idea is to prorate the path fruit to the terminal branches that
follow the sections of the path where the path fruit are found.
The prorating is done according to the probabilities of selection.
Under the RP-EP method the three apples on the path section 1-2
would be prorated as follows:

Terminal branch Prorated amount
1-2-1-1 (}) (}) (3) = .75

1-2-1-2 (}) (}) (3) = .75

1-2-2 (}) (3) = 1. 50--
Total = 3.00

Notice that (})(}), (})(}), and (}) are the conditional

probabilities of selecting one of the three terminal branches,
given that the path section 1-2 has already been selected. The
conditional probabilities add to 1 which verifies that the method
of prorating accounts for all of the path fruit.

If 1-2-1-1, for example, is the selected terminal branch,
.75 IS added to 73, the number of apples on 1-2-1-1. The estimate
of the total number of apples on the tree is then obtained by
dividing 73.75 by the probability of selecting 1-2-1-1 which is

111 1 1(3")(5)(2)(2)=60. Thus, (60)(73.75) = 4425. The branch total,

73.75, (including the prorated amount) appears in Table 3.1 In
the column titled EP, and the expanded total, 4425, appears in

~
Table 3.2 in the column titled Y2.
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Under the RP-PPS method, the system of prorating IS the
same but the probabilities are different. Thus,

Terminal branch Prorated amount

1-2-1-1 (4.13) (1.48) (3) = .81"5":96 3:80

1-2-1-2 (4.13) (2.32) (3) = 1. 275.96 m
1-2-2 (1.83) (3) = .925.96

Total = 3.00
The estimator Y., Eq. (3.2), can be written In a form

1

that corresponds to the idea of prorating path fruit to terminal
branches. Let p. = (p 0) ... (p 0)' which is the probability of1 01 tl

1 0 h .th 0se ectlng t e 1 termInal branch. It follows that

y. =
1

y.
1

p.
1

(3.3)

where y. = [(Plo) ... (PtO)y .]+ ...+[(P(k+·)·)···(Pt·)Yko]+ ...+[YtO]1 1 1 01 1 1 1 1 1

Thus, Yo IS the number of fruit "on" the ith terminal branch in-
1

eluding prorated amounts of path fruit. Assuming the RP-PPS method

and terminal branch 1-2-1-1 as an example. the value of y. is1

(~:~~) (~:~~) (3) + 73 = 73.81 and Yi IS ~~3~63 = 2379 which gives

the same result that was obtained when Eq. (3.2) was used.

Table 3.2, columns headed Y2 and Y4' present estimates of

the total number of apples on the tree for the RP-EP and RP-PPS
methods and each of the possible random paths. These estimates
were obtained by using the technique of prorating path fruit,
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Eq. (3.3). That is, estimates of the total number of apples
were obtained by dividing the values of Y. (last two columns of

1

Table 3.1) by the appropriate probabilities which are presented
in Table 3.2, columns P2 and P4.

For comparison of the four methods we now need to decide
how to include the path fruit for the DS-EP and DS-PPS methods.
If the amount of path fruit is small, the best method might be
to count all path fruit at the time the tree is mapped to deter-
mine terminal branches. In this case, assuming a sample of one
terminal branch, the estimator, would be

~
y.

1

I

= Y +
y.

1
p.

1

(3.4)

where Y IS the number of path fruit, y. IS the number of fruit
1

on the ith terminal branch and P. IS the probability of selecting
1

the ith terminal branch. Alternatives are not considered in this
illustration because, from a practical viewpoint, interest is in
the random path methods. Thus, as a matter of expediency, the

~ ~
estimator (3.4) was used to obtain the estimates, Yl and Y3, that

are presented in Table 3.2 for the DS-EP and DS-PPS methods.
Since only Sl apples out of 1901 were on path sections, the method
of accounting for the apples on path sections probably has a
very small impact on the sampling variance.
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